Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Feature Engineering

6

X PR 24 Rt >
5 — ~
ST S !
+* * % v2
15 ¥ 0 %!ug;‘ “3& !
] -2 2 0 2 4 6
] X_1 (x_1)*2
10 —
5
0 _:_-
r~r~rrr—rrr-—rr—rr—1r-1r 1" TT T
0 6 12 18 24 30 36 42 48 54 60 66
Many slides attributable to: Prof. Mike Hughes
Erik Sudderth (UCI)

Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

https://www.cs.tufts.edu/comp/135/2019s/

Logistics

* Project 1 is out! (due in two weeks)
» Start early! Work required is about 2 HWs

« HW4 will be out next Wed

* Due two weeks later (1 week after project)
» More time to learn req’d material

 Class TOMORROW 3pm
« Mon on Thurs at Tufts

Objectives Today:
Feature Engineering

Concept Check-in
How should I preprocess my features?
How can I select a subset of important features?

What to do if features are missing?

Check-1n Q1: logsumexp

def my log sum exp(scores K):
return np.log(np.sum(np.exp(scores K)))

my log sum exp([0.0, 3.0, =1.0])

my log sum exp([-100.0, -97.0, -101.0])

my log sum exp([-1000.0, -997.0, -1001.0])

What scalar value should these calls produce?
What happens instead with a real computer? What is the fix?

logsumexp explained

logsumexp([—100, —97, —101]) = log(e~1%0 4+ =97 4 ¢~ 101)
=log(e 7 (e + e’ +e))
=log(e ") +log (e ® + e +e7%)

= —97 + log (g?’ + eV + ef)

1<sum<3

Factor out the MAX of -97

Check-1n Q2: Gradient steps

How can I diagnose step size choices?

What are three ways to improve step size selection?

Check-1n Q2: Gradient steps

How can I diagnose step size choices?

Trace plots of loss, gradient norm, and parameters
Explore like “Goldilocks”, find one too small and
one too big

What are three ways to improve step size selection?
Use decaying step size

Use line search to find step size that reduces loss
Use second order methods (Newton, LBFGS)

What will we learn?

Supervised s B :
Learning , Data, Label Pairs :

N Performance
{CBn, yn}n@:l measure |

label

Transtormations of Features

Fitting a line isn’t always ideal

Order 1 polynomial Order 3 polynomial
1 8 1 B T T T T T T T T T

T T T T T T T T T

it
i)

)

)

Can fit inear tunctions to
nonlinear features

A nonlinear function of x:
y(ibz) — (9() + (91337; + (9233@' + (93337:

Can be written as a linear function of Qb (ZC :) [1 L X 2 X 3]

Zeg¢g T;) = ‘9T¢(ajz)

“Linear regressmn means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data

What feature transtorm to use?

» Anything that works for your data!

* sin / cos for periodic data

 polynomials for high-order dependencies

o(x;) =1z 27 ..]

 interactions between feature dimensions
d(xi) = |1 TinTio Ti3Tia .. .|

« Many other choices possible

Standard Pipeline

Data, Label Pairs

{xm yn}fzvzl

Task

data

Performance
measure

label

Feature Transform Pipeline

Task

Data, Labelj\l/?airs
{xnayn}nzl

Feature, Label Pairs

{¢(xn)7 yn}fz\le

Performance
measure

label

What features to use here?

X
X
X
2 X X X X
X X
X
1 * .
X - + X X
X + T + X
X" X + 4 +
+ 4+ +

0 "X + R

wHH T+ + X A

X + + 4+
+
+
- +
++ + + X K >
-1 1 + X
o X
X X
X X
w X
-2 x X X X X)‘Q
X

Reasons for Feature Transform
» Improve prediction quality
« Improve interpretability

« Reduce computational costs
» Fewer features means fewer parameters

« Improve numerical performance of training

Recall from HW2
Polynomial Features

1000 A

800 -

600 -

400 A

num poly. features

200 A

10

Error vs. Degree (orig. poly.)

Least Squares MSE for Polynomial Features

g & 8 8

mean squared error

N
o
A

-
o

(=

polynomial degree

Error vs. Degree (rescaled poly)

Least Squares MSE for Rescaled Polynomial Features

70

mean squared error

polynomial degree

Weight histograms (orig. poly.

2 .
o T A Ll L) T T Ll " T T T T
5 K
0 T T T T T T T T T T T T
g 4
o | 1 L : L -] Ll L] "] ! 1
10 |
0 T T T T~ re— L — — T T T T T
50
o T T L) L) 1] Em—— m L) — L) T T T T
200 -
0 T T L) L L3 T A LS L4 T T 1
-10° -10° -10° -10° -10-° -10"% 107" 1073 10° 10° 10° 10°

Weight histograms
(rescaled poly.)

Il
. 21
o
B
0 L T T L L L\l T T L T |l Al
™~ 5 i
o
&
0 L] T Al L L L\l T L) L -) L\l Al
™M
o 10 1
-
0 L T Al LJ Ll 1 T L) L h_r T Al
- 20 1
o
B
0 1 T N — | Ll L\l T Ll 1 — T T
u
. 20 1
(=
B
0 L T T LS Ll L\l T L L T . .-__IA“ Al
(=)
. 20 A1
o
B
0 - — L T - L

-10° -10° -10°? -10° -10"* -10"° 10°° 1073 10° 10° 10° 10°

Scikit-Learn Transformer API

Construct a “transformer”
>>> t = Transformer()

Train any parameters needed
>>> t., fit(X_NF) # y optional, often unused

Apply to extract new features
>>> feat NG = t.transform(x NF)

Example 1: Sum of features

From sklearn.base import TransformerMixin

class SumFeatureExtractor (TransformerMixin):
""" Extracts *sum* of feature vector as new feat
def init (self):

pass

def fit(self, x NF):

return self

def transform(self, x NF):

return np.sum(x NF, axis=1l)[:,np.newaxis]

Example 2: Square features

From sklearn.base import TransformerMixin
class SquareFeatureExtractor(TransformerMixin):

Extracts *square* of feature vector as new feat

a“irmrn

def fit(self, x NF):

return self

def transform(self, x NF):

TODO

Example 2: Square features

From sklearn.base import TransformerMixin
class SquareFeatureExtractor(TransformerMixin):

""" Extracts *square* of feature vector as new feat
def fit(self, x NF):

return self

def transform(self, x NF):
return np.square(x NF)

OR return np.power(x NF, 2)

x X
X
x
x xx
x
%
x x%
x
o x
% x
X x
xxxx +
x x X -
x +
+
% L
X x +
< N o
A AR
x
x
Xx X x
- x
X X .
x
+ e
+ + x
+...+ +
+ ON.....-. x
ML R
+ t..V.’... X %
.l..?v... o1
+* + + Xl
- xx
xl x
Xy i 2 F
x
- o — (q]

(x_1)72

Feature Rescaling

Input: Each numeric feature has arbitrary min/max
« Somein [0, 1], Some in [-5, 5], Some [-3333, -2222]

Transformed feature vector
 Set each feature value f to have [0, 1] range

O(xn)f =

« min_{ = minimum observed in training set
* max_f = maximum observed in training set

Tpf — MINg

max s — minf

Example 3: Rescaling features

From sklearn.base import TransformerMixin
class MinMaxScaleFeatureExtractor (TransformerMixin):
""" Rescales features between 0 and 1
def fit(self, x NF):
self.min F = # TODO
self.max F = # TODO

def transform(self, x NF):
TODO

Example 3: Rescaling features

From sklearn.base import TransformerMixin

class MinMaxFeatureRescaler(TransformerMixin):

“rmrn

Rescales each feature column to be within [0, 1]
Uses training data min/max

def fit(self, x NF):

def

self.min 1F = np.min(x NF, axis=0, keepdims=1)
self.max 1F = np.max(x NF, axis=0, keepdims=1)

transform(self, x NF):
feat NF = ((X NF — self.min 1F)

/ (self.max 1F — self.min 1F))
return feat NF

Feature Standardization

Input: Each feature is numeric, has arbitrary scale

Transformed feature vector
« Set each feature value f to have zero mean, unit variance

,u f Empirical mean observed in training set

0} f Empirical standard deviation observed in training set

Feature Standardization

Tnf = Hf
Qb(mn)f —
Uf

* Treats each feature as “Normal(o, 1)”
* Typical range will be -3 to +3

 If original data is approximately normal

e Also called z-score transform

Feature Scaling with Outliers

« What happens to standard scaling when
training data has outliers?

20 —
15 —
10 —

5 —

0 —|—
r—1r 1.1 1T T 1T " T T T " T" 71"
0 6 12 18 24 30 36 42 48 54 60 66

Feature Scaling with Outliers

sklearn.preprocessing.RobustScaler

class sklearn.preprocessing. RobustScaler (with_centen'ng:True, with_scaling=True, quantile_range=
(25.0, 75.0), copy=True) [source]

Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: In-
terquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th
quantile).

Combining several transformers

from sklearn.pipeline import FeatureUnion

union transformer = FeatureUnion(transformer list=[
('sum x', SumFeatureExtractor()),
('square x', SquareFeatureExtractor()),
('rescale x', MinMaxFeatureRescaler()),

1)

union transformer.fit(x N2);
union transformer.transform(x N2)[:3]

array([[-2.19, 5.19, 0.01, 0.04, 0.49],
[-3.04' 3.41' 1-43' 0.13’ 0022]’
[1.81, 0.01, 3.59, 0.48, 0.88]])

Categorical Features

["uses Firefox", "uses Chrome", "uses
Safari", "uses Internet Explorer"]

Numerical encoding

"uses Firefox” - 1

“uses Safari” - 3

Categorical Features

["uses Firefox", "uses Chrome", "uses
Safari", "uses Internet Explorer"]

One-hot vector + &

"uses Firefox”:]. O () ()

“uyses Safari” | 0010

Feature Selection or “Pruning”

Best Subset Selection

Algorithm 6.1 Best subset selection

1. Let Mo denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k=1,2,...p:

(a) Fit all (7) models that contain exactly k predictors.

(b) Pick the best among these (}) models, and call it My. Here best
is defined as having the smallest RSS, or equivalently largest R?.

3. Select a single best model from among Mo,..., M, using cross-

validated prediction error, Cp, (AIC), BIC, or adjusted RZ.

Problem: Too many subsets!

there are 2P models that involve subsets of p predictors. So if p = 10,
then there are approximately 1,000 possible models to be considered, and if

p = 20, then there are over one million possibilities!

Forward Stepwise Selection

Start with zero feature model (guess mean)
StoreasM_ 0

Add best scoring single feature (search among F)
StoreasM_ 1

Foreachsizek=2, ... F
Try each possible not-included feature (F — k + 1)
Add best scoring feature to the model M_ k-1
Storeas M_ k

Pick best among M_o0, M_1, ... M_F on validation

Best vs Forward Stepwise

Variables

Best subset

Forward stepwise

One
Two
Three
Four

rating

rating, income

rating, income, student
cards, income,

student, limit

rating

rating, income

rating, income, student
rating, income,

student. 1imit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.

Easy to find cases where forward stepwise ‘s greedy
approach doesn’t deliver best possible subset.

Backwards Stepwise Selection

Start with all features

Gradually test all models with one feature
removed.

Repeat.

Other Feature Selection
Methods

« Remove features with low variance

e Select to maximize mutual information

Missing Data: Imputation

 https://scikit-learn.org/stable/modules/impute.html#impute

https://scikit-learn.org/stable/modules/impute.html

Properties of Good Features

e Informative

* Independent

« Monotonic with predictive probability
» If monotonic, linear decision boundaries possible

