
Feature Engineering

1

Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Many slides attributable to:
Erik Sudderth (UCI)
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Prof. Mike Hughes

x �(x)transform

https://www.cs.tufts.edu/comp/135/2019s/

Logistics

• Project 1 is out! (due in two weeks)
• Start early! Work required is about 2 HWs

• HW4 will be out next Wed
• Due two weeks later (1 week after project)
• More time to learn req’d material

• Class TOMORROW 3pm
• Mon on Thurs at Tufts

2Mike Hughes - Tufts COMP 135 - Spring 2019

Objectives Today:
Feature Engineering

Concept Check-in

How should I preprocess my features?

How can I select a subset of important features?

What to do if features are missing?

3Mike Hughes - Tufts COMP 135 - Spring 2019

Check-in Q1: logsumexp

4Mike Hughes - Tufts COMP 135 - Spring 2019

What scalar value should these calls produce?
What happens instead with a real computer? What is the fix?

logsumexp explained

5Mike Hughes - Tufts COMP 135 - Spring 2019

logsumexp([�100,�97,�101]) = log(e�100
+ e�97

+ e�101
)

= log(e�97
(e�3

+ e0 + e�4
))

= log(e�97
) + log

�
e�3

+ e0 + e�4
�

= �97 + log

0

@e�3
+ e0 + e�4

| {z }
1sum3

1

A

Factor out the MAX of -97

Check-in Q2: Gradient steps

6Mike Hughes - Tufts COMP 135 - Spring 2019

How can I diagnose step size choices?

What are three ways to improve step size selection?

Check-in Q2: Gradient steps

7Mike Hughes - Tufts COMP 135 - Spring 2019

How can I diagnose step size choices?
Trace plots of loss, gradient norm, and parameters
Explore like “Goldilocks”, find one too small and
one too big

What are three ways to improve step size selection?
Use decaying step size
Use line search to find step size that reduces loss
Use second order methods (Newton, LBFGS)

What will we learn?

8Mike Hughes - Tufts COMP 135 - Spring 2019

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Data, Label Pairs
Performance

measureTask

data
x

label
y

{xn, yn}Nn=1

Training

Prediction

Evaluation

9Mike Hughes - Tufts COMP 135 - Spring 2019

Transformations of Features

Fitting a line isn’t always ideal

10Mike Hughes - Tufts COMP 135 - Spring 2019

Can fit linear functions to
nonlinear features

11Mike Hughes - Tufts COMP 135 - Spring 2019

ŷ(xi) = ✓0 + ✓1xi + ✓2x
2
i + ✓3x

3
i

A nonlinear function of x:

Can be written as a linear function of

“Linear regression” means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data

�(xi) = [1 xi x
2
i x

3
i]

ŷ(xi) =
4X

g=1

✓g�g(xi) = ✓

T
�(xi)

What feature transform to use?
• Anything that works for your data!

• sin / cos for periodic data

• polynomials for high-order dependencies

• interactions between feature dimensions

• Many other choices possible

12Mike Hughes - Tufts COMP 135 - Spring 2019

�(xi) = [1 xi x
2
i . . .]

�(xi) = [1 xi1xi2 xi3xi4 . . .]

Standard Pipeline

13Mike Hughes - Tufts COMP 135 - Spring 2019

data
x

label
y

Data, Label Pairs
Performance

measure{xn, yn}Nn=1
Task

Feature, Label Pairs

Feature Transform Pipeline

14Mike Hughes - Tufts COMP 135 - Spring 2019

data
x

label
y

Data, Label Pairs

Performance
measure

{xn, yn}Nn=1

Task

�(x)

{�(xn), yn}Nn=1

What features to use here?

15Mike Hughes - Tufts COMP 135 - Spring 2019

Reasons for Feature Transform

• Improve prediction quality

• Improve interpretability

• Reduce computational costs
• Fewer features means fewer parameters

• Improve numerical performance of training

16Mike Hughes - Tufts COMP 135 - Spring 2019

Recall from HW2
Polynomial Features

17Mike Hughes - Tufts COMP 135 - Spring 2019

Error vs. Degree (orig. poly.)

18Mike Hughes - Tufts COMP 135 - Spring 2019

Error vs. Degree (rescaled poly)

19Mike Hughes - Tufts COMP 135 - Spring 2019

Weight histograms (orig. poly.)

20Mike Hughes - Tufts COMP 135 - Spring 2019

Weight histograms
(rescaled poly.)

21Mike Hughes - Tufts COMP 135 - Spring 2019

Scikit-Learn Transformer API

22Mike Hughes - Tufts COMP 135 - Spring 2019

Construct a “transformer”
>>> t = Transformer()

Train any parameters needed
>>> t.fit(x_NF) # y optional, often unused

Apply to extract new features
>>> feat_NG = t.transform(x_NF)

Example 1: Sum of features
From sklearn.base import TransformerMixin

class SumFeatureExtractor(TransformerMixin):

""" Extracts *sum* of feature vector as new feat

“””

def __init__(self):

pass

def fit(self, x_NF):

return self

def transform(self, x_NF):

return np.sum(x_NF, axis=1)[:,np.newaxis]

23Mike Hughes - Tufts COMP 135 - Spring 2019

Example 2: Square features
From sklearn.base import TransformerMixin
class SquareFeatureExtractor(TransformerMixin):

""" Extracts *square* of feature vector as new feat
“””
def fit(self, x_NF):

return self

def transform(self, x_NF):
TODO

24Mike Hughes - Tufts COMP 135 - Spring 2019

Example 2: Square features
From sklearn.base import TransformerMixin
class SquareFeatureExtractor(TransformerMixin):

""" Extracts *square* of feature vector as new feat
“””
def fit(self, x_NF):

return self

def transform(self, x_NF):
return np.square(x_NF)
OR return np.power(x_NF, 2)

25Mike Hughes - Tufts COMP 135 - Spring 2019

26Mike Hughes - Tufts COMP 135 - Spring 2019

Feature Rescaling
Input: Each numeric feature has arbitrary min/max

• Some in [0, 1], Some in [-5, 5], Some [-3333, -2222]

Transformed feature vector
• Set each feature value f to have [0, 1] range

• min_f = minimum observed in training set
• max_f = maximum observed in training set

27Mike Hughes - Tufts COMP 135 - Spring 2019

�(xn)f =

xnf �minf

maxf �minf

Example 3: Rescaling features
From sklearn.base import TransformerMixin
class MinMaxScaleFeatureExtractor(TransformerMixin):

""" Rescales features between 0 and 1
“””
def fit(self, x_NF):

self.min_F = # TODO
self.max_F = # TODO

def transform(self, x_NF):
TODO

28Mike Hughes - Tufts COMP 135 - Spring 2019

Example 3: Rescaling features
From sklearn.base import TransformerMixin

class MinMaxFeatureRescaler(TransformerMixin):

""" Rescales each feature column to be within [0, 1]

Uses training data min/max

“””

def fit(self, x_NF):

self.min_1F = np.min(x_NF, axis=0, keepdims=1)

self.max_1F = np.max(x_NF, axis=0, keepdims=1)

def transform(self, x_NF):

feat_NF = ((x_NF – self.min_1F)

/ (self.max_1F – self.min_1F))

return feat_NF

29Mike Hughes - Tufts COMP 135 - Spring 2019

Input: Each feature is numeric, has arbitrary scale

Transformed feature vector
• Set each feature value f to have zero mean, unit variance

Empirical mean observed in training set

Empirical standard deviation observed in training set

Feature Standardization

�(xn)f =
xnf � µf

�f

30Mike Hughes - Tufts COMP 135 - Spring 2019

µf

�f

Feature Standardization

• Treats each feature as “Normal(0, 1)”
• Typical range will be -3 to +3
• If original data is approximately normal

• Also called z-score transform

31Mike Hughes - Tufts COMP 135 - Spring 2019

�(xn)f =
xnf � µf

�f

Feature Scaling with Outliers

• What happens to standard scaling when
training data has outliers?

32Mike Hughes - Tufts COMP 135 - Spring 2019

Feature Scaling with Outliers

33Mike Hughes - Tufts COMP 135 - Spring 2019

Combining several transformers

34Mike Hughes - Tufts COMP 135 - Spring 2019

Categorical Features

Numerical encoding

35Mike Hughes - Tufts COMP 135 - Spring 2019

["uses Firefox", "uses Chrome", "uses
Safari", "uses Internet Explorer"]

"uses Firefox” à 1

“uses Safari” à 3

Categorical Features

One-hot vector

36Mike Hughes - Tufts COMP 135 - Spring 2019

["uses Firefox", "uses Chrome", "uses
Safari", "uses Internet Explorer"]

[0 0 1 0]

[1 0 0 0]
Fire

fox

Chrome

Safari
Inter

net
Explorer

"uses Firefox”

“uses Safari”

Feature Selection or “Pruning”

37Mike Hughes - Tufts COMP 135 - Spring 2019

Best Subset Selection

38Mike Hughes - Tufts COMP 135 - Spring 2019

Problem: Too many subsets!

39Mike Hughes - Tufts COMP 135 - Spring 2019

Forward Stepwise Selection

40Mike Hughes - Tufts COMP 135 - Spring 2019

Start with zero feature model (guess mean)
Store as M_0

Add best scoring single feature (search among F)
Store as M_1

For each size k = 2, … F
Try each possible not-included feature (F – k + 1)
Add best scoring feature to the model M_k-1
Store as M_k

Pick best among M_0, M_1, … M_F on validation

Best vs Forward Stepwise

41Mike Hughes - Tufts COMP 135 - Spring 2019

Easy to find cases where forward stepwise ‘s greedy
approach doesn’t deliver best possible subset.

Backwards Stepwise Selection

Start with all features

Gradually test all models with one feature
removed.

Repeat.

42Mike Hughes - Tufts COMP 135 - Spring 2019

Other Feature Selection
Methods
• Remove features with low variance

• Select to maximize mutual information

43Mike Hughes - Tufts COMP 135 - Spring 2019

Missing Data: Imputation
• https://scikit-learn.org/stable/modules/impute.html#impute

44Mike Hughes - Tufts COMP 135 - Spring 2019

https://scikit-learn.org/stable/modules/impute.html

Properties of Good Features

45Mike Hughes - Tufts COMP 135 - Spring 2019

• Informative

• Independent

• Monotonic with predictive probability
• If monotonic, linear decision boundaries possible

