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Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Many slides attributable to:
Erik Sudderth (UCI)
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Prof. Mike Hughes
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Logistics

• Project 1 is out! (due in two weeks) 
• Start early! Work required is about 2 HWs

• HW4 will be out next Wed
• Due two weeks later (1 week after project)
• More time to learn req’d material

• Class TOMORROW 3pm
• Mon on Thurs at Tufts
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Objectives Today:
Feature Engineering

Concept Check-in

How should I preprocess my features?

How can I select a subset of important features?

What to do if features are missing?

3Mike Hughes - Tufts COMP 135 - Spring 2019



Check-in Q1: logsumexp
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What scalar value should these calls produce?
What happens instead with a real computer? What is the fix?



logsumexp explained
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Check-in Q2: Gradient steps

6Mike Hughes - Tufts COMP 135 - Spring 2019

How can I diagnose step size choices?

What are three ways to improve step size selection?



Check-in Q2: Gradient steps
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How can I diagnose step size choices?
Trace plots of loss, gradient norm, and parameters
Explore like “Goldilocks”, find one too small and 
one too big

What are three ways to improve step size selection?
Use decaying step size
Use line search to find step size that reduces loss
Use second order methods (Newton, LBFGS)



What will we learn?
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Supervised
Learning

Unsupervised 
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Reinforcement 
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Transformations of Features



Fitting a line isn’t always ideal  
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Can fit linear functions to 
nonlinear features
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A nonlinear function of x:

Can be written as a linear function of 

“Linear regression” means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data
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What feature transform to use?
• Anything that works for your data!

• sin / cos for periodic data

• polynomials for high-order dependencies

• interactions between feature dimensions

• Many other choices possible
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Standard Pipeline
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Feature, Label Pairs

Feature Transform Pipeline
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What features to use here?
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Reasons for Feature Transform

• Improve prediction quality

• Improve interpretability

• Reduce computational costs
• Fewer features means fewer parameters

• Improve numerical performance of training
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Recall from HW2
Polynomial Features
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Error vs. Degree (orig. poly.)
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Error vs. Degree (rescaled poly)

19Mike Hughes - Tufts COMP 135 - Spring 2019



Weight histograms (orig. poly.)
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Weight histograms
(rescaled poly.)
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Scikit-Learn Transformer API
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# Construct a “transformer”
>>> t = Transformer()

# Train any parameters needed
>>> t.fit(x_NF) # y optional, often unused

# Apply to extract new features
>>> feat_NG = t.transform(x_NF)



Example 1: Sum of features
From sklearn.base import TransformerMixin

class SumFeatureExtractor(TransformerMixin):

""" Extracts *sum* of feature vector as new feat

“””

def __init__(self):

pass

def fit(self, x_NF):

return self

def transform(self, x_NF):

return np.sum(x_NF, axis=1)[:,np.newaxis]    
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Example 2: Square features
From sklearn.base import TransformerMixin
class SquareFeatureExtractor(TransformerMixin):

""" Extracts *square* of feature vector as new feat
“””
def fit(self, x_NF):

return self

def transform(self, x_NF):
TODO    
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Example 2: Square features
From sklearn.base import TransformerMixin
class SquareFeatureExtractor(TransformerMixin):

""" Extracts *square* of feature vector as new feat
“””
def fit(self, x_NF):

return self

def transform(self, x_NF):
return np.square(x_NF)
# OR return np.power(x_NF, 2)
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Feature Rescaling
Input: Each numeric feature has arbitrary min/max

• Some in [0, 1], Some in [-5, 5], Some [-3333, -2222]

Transformed feature vector
• Set each feature value f to have [0, 1] range

• min_f = minimum observed in training set
• max_f = maximum observed in training set 
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�(xn)f =

xnf �minf

maxf �minf



Example 3: Rescaling features
From sklearn.base import TransformerMixin
class MinMaxScaleFeatureExtractor(TransformerMixin):

""" Rescales features between 0 and 1
“””
def fit(self, x_NF):

self.min_F = # TODO
self.max_F = # TODO

def transform(self, x_NF):
# TODO
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Example 3: Rescaling features
From sklearn.base import TransformerMixin

class MinMaxFeatureRescaler(TransformerMixin):

""" Rescales each feature column to be within [0, 1]

Uses training data min/max

“””

def fit(self, x_NF):

self.min_1F = np.min(x_NF, axis=0, keepdims=1)

self.max_1F = np.max(x_NF, axis=0, keepdims=1)

def transform(self, x_NF):

feat_NF = ((x_NF – self.min_1F)

/ (self.max_1F – self.min_1F))

return feat_NF
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Input: Each feature is numeric, has arbitrary scale

Transformed feature vector
• Set each feature value f to have zero mean, unit variance

Empirical mean observed in training set

Empirical standard deviation observed in training set 

Feature Standardization

�(xn)f =
xnf � µf

�f
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µf

�f



Feature Standardization

• Treats each feature as “Normal(0, 1)”
• Typical range will be -3 to +3
• If original data is approximately normal

• Also called z-score transform
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�(xn)f =
xnf � µf

�f



Feature Scaling with Outliers

• What happens to standard scaling when 
training data has outliers?
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Feature Scaling with Outliers
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Combining several transformers
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Categorical Features

Numerical encoding
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["uses Firefox", "uses Chrome", "uses
Safari", "uses Internet Explorer"]

"uses Firefox”   à 1

“uses Safari” à 3



Categorical Features

One-hot vector
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["uses Firefox", "uses Chrome", "uses
Safari", "uses Internet Explorer"]

[ 0 0 1 0 ]

[ 1 0 0 0 ]
Fire

fox

Chrome

Safari
Inter

net 
Explorer

"uses Firefox”

“uses Safari”



Feature Selection or “Pruning”
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Best Subset Selection
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Problem: Too many subsets!
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Forward Stepwise Selection
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Start with zero feature model (guess mean)
Store as M_0

Add best scoring single feature (search among F)
Store as M_1

For each size k = 2, … F
Try each possible not-included feature (F – k + 1)
Add best scoring feature to the model M_k-1
Store as M_k

Pick best among M_0, M_1, … M_F on validation



Best vs Forward Stepwise
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Easy to find cases where forward stepwise ‘s greedy 
approach doesn’t deliver best possible subset.



Backwards Stepwise Selection

Start with all features

Gradually test all models with one feature 
removed.

Repeat. 
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Other Feature Selection 
Methods
• Remove features with low variance

• Select to maximize mutual information
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Missing Data: Imputation
• https://scikit-learn.org/stable/modules/impute.html#impute
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https://scikit-learn.org/stable/modules/impute.html


Properties of Good Features
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• Informative 

• Independent

• Monotonic with predictive probability 
• If monotonic, linear decision boundaries possible


