Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Neural Networks

Many slides attributable to:
Erik Sudderth (UCI), Emily Fox (UW),
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Logistics

- Project 1: Keep going!
- Recitation next Monday
 - Hands-on intro to neural nets
 - With automatic gradient computation

Objectives Today: Neural Networks Unit 1/2

- How to learn feature representations
 - Feed-forward neural nets (MLPs)
 - Universal approximation
 - Activation functions
- The Rise of Deep Learning:
 - Success stories on Images and Language
- Preview: Training via gradient descent
 - Back-propagation = gradient descent + chain rule

What will we learn?

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Task: Binary Classification

Supervised Learning

binary classification

Unsupervised Learning

Reinforcement Learning y is a binary variable (red or blue)

Example: Hotdog or Not

https://www.theverge.com/tldr/2017/5/14/15639784/hbo-silicon-valley-not-hotdog-app-download

Text Sentiment Classification

Sample review:

Watching the chefs create incredible edible art made the experience very unique.

My wife tried their <u>ramen</u> and it was pretty forgettable.

All the <u>sushi</u> was delicious! Easily best <u>sushi</u> in Seattle.

Image Classification

Input: x Image pixels Output: y
Predicted object

Feature Transform Pipeline

Predicted Probas vs Binary Labels

Decision Boundary is Linear

$$\{x \in \mathbb{R}^2 : \sigma(w^T \tilde{x}) = 0.5\} \longleftrightarrow \{x \in \mathbb{R}^2 : w^T \tilde{x} = 0\}$$

Logistic Regr. Network Diagram

Credit: Emily Fox (UW)

https://courses.cs.washington.edu/courses/cse41 6/18sp/slides/

A "Neuron" or "Perceptron" Unit

"Inspired" by brain biology

Signals come in through the dendrites into the Soma A signal goes out via the axon to other neurons

Only one axon per neuron

Slide Credit: Bhiksha Raj (CMU)

Challenge: Find w for these functions

x ₁ OR x ₂			x ₁ AND x ₂			
x_1	X_2	Y	x_1	x_2	Y	
0	0	0	0	0	0	
0	1	1	0	1	0	
1	0	1	1	0	0	
1	1	1	1	1	1	

Challenge: Find w for these functions

x ₁ OR x ₂			x ₁ AND x ₂		
x_1	x_2	Y	x_1	X_2	Y
0	0	0	0	0	0
0	1	1	0	1	0
1	0	1	1	0	0
1	1	1	1	1	1
-0.5 + x[1] + x[2]			-1.5 + x[1] + x[2]		

What we can't do with linear decision boundary classifiers

XOR = $\mathbf{x}[1]$ and not $\mathbf{x}[2]$ OR not $\mathbf{x}[1]$ and $\mathbf{x}[2]$

Idea: Compose Neurons together!

Can you find w to solve XOR?

Can you find w to solve XOR?

Can you find w to solve XOR?

1D Input + 3 hidden units

1D Input + 3 hidden units

Example functions (before final threshold)

Intuition: Piece-wise step function Partitioning input space into regions

More layers = more partitions

Interactive Demo

http://neuralnetworksanddeeplearning.com/chap4.html #universality with one input and one output

Credit: Michael Nielson

MLPs can approximate any functions with enough hidden units!

Universal approximation theorem

From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, the **universal approximation theorem** states^[1] that a feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of \mathbb{R}^n , under mild assumptions on the activation function. The theorem thus states that simple neural networks can *represent* a wide variety of interesting functions when given appropriate parameters; however, it does not touch upon the algorithmic learnability of those parameters.

One of the first versions of the theorem was proved by George Cybenko in 1989 for sigmoid activation functions. [2]

Neuron Design

What's wrong with hard step activation function?

Neuron Design

What's wrong with hard step activation function?

Which Activation Function?

Activation Functions

Logistic
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$
 $\frac{\partial \sigma}{\partial z}(z) = \sigma(z)(1 - \sigma(z))$

Hyperbolic Tangent $\sigma(z) = \frac{1 - \exp(-2z)}{1 + \exp(-2z)}$ $\frac{\partial \sigma}{\partial z}(z) = 1 - (\sigma(z))^2$

Gaussian $\sigma(z) = \exp(-z^2/2)$ $\frac{\partial \sigma}{\partial z}(z) = -z\sigma(z)$

ReLU $\sigma(z) = \max(0, z)$ $\frac{\partial \sigma}{\partial z}(z) = \mathbb{1}[z > 0]$

Linear $\sigma(z) = z$ and many others...

Activation Function Advice

Credit: Emily Fox (UW)

- Sigmoid
 - Historically popular, but (mostly) fallen out of favor
 - Neuron's activation saturates (weights get very large → gradients get small)
 - Not zero-centered → other issues in the gradient steps
 - When put on the output layer, called "softmax" because interpreted as class probability (soft assignment)
- Hyperbolic tangent g(x) = tanh(x)
 - Saturates like sigmoid unit, but zero-centered
- Rectified linear unit (ReLU) g(x) = x⁺ = max(0,x)
 - Most popular choice these days
 - Fragile during training and neurons can "die off"...
 be careful about learning rates
 - "Noisy" or "leaky" variants
- Softplus g(x) = log(1+exp(x))
 - Smooth approximation to rectifier activation

2018 Emily Fox

Exciting Applications: Computer Vision

Object Recognition from Images

Deep Neural Networks for Object Recognition

Deep Neural Networks for Object Recognition

Scores for each possible object category

Each Layer Extracts "Higher Level" Features

More layers = less error!

ImageNet challenge 1000 categories, 1.2 million images in training set

Credit: KDD Tutorial by Sun, Xiao, & Choi: http://dl4health.org/
Figure idea originally from He et. al., CVPR 2016

mushroom

2012 ImageNet Challenge Winner

8 layers, 60M parameters [Krizhevsky et al. '12]

Achieving these amazing results required:

- New learning algorithms
- GPU implementation

State of the art Results

German traffic sign recognition benchmark

99.5% accuracy (IDSIA team)

House number recognition

97.8% accuracy per character
 [Goodfellow et al. '13]

Semantic Segmentation

[Farabet et al. '13]

Object Detection

Redmon et al. 2015 http://pjreddie.com/yolo/

Exciting Applications: Natural Language (Spoken and Written)

Reaching Human Performance in Speech-to-Text

Historic Achievement: Microsoft researchers reach human parity in conversational speech recognition October 18, 2016 | <u>Allison Linn</u>

https://arxiv.org/pdf/1610.05256.pdf

In a paper <u>published Monday</u>, a team of researchers and engineers in Microsoft Artificial Intelligence and Research reported a speech recognition system that makes the same or fewer errors than professional transcriptionists. The researchers reported a word error rate (WER) of 5.9 percent, down from the 6.3 percent WER the team <u>reported</u> just last month.

To reach the human parity milestone, the team used <u>Microsoft Cognitive Toolkit</u>, a homegrown system for deep learning that the research team has made available on <u>GitHub</u> via an open source license.

Gains in Translation Quality

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

Any Disadvantages?

Deep Neural Networks can overfit!

Ways to avoid overfitting

- More training data!
- L2 / L1 penalties on weights
- More tricks next time....
 - Early stopping
 - Dropout

Objectives Today: Neural Networks Unit 1/2

- How to learn feature representations
 - Feed-forward neural nets (MLPs)
 - Universal approximation
 - Activation functions
- The Rise of Deep Learning:
 - Success stories on Images and Language
- Preview: Training via gradient descent
 - Back-propagation = gradient descent + chain rule

Interactive Demo

• https://playground.tensorflow.org

- Use XOR dataset
- Explore impact of:
 - Number of hidden units
 - Activation function

How to train Neural Nets? Just like logistic regression Set up a loss function Apply Gradient Descent!

Review: LR notation

Feature vector with first entry constant

$$\tilde{x}_n = [1 \ x_{n1} \ x_{n2} \ \dots x_{nF}]$$

• Weight vector (first entry is the "bias")

$$w = [w_0 \quad w_1 \quad w_2 \dots w_F]$$

• "Score" value z (real number, -inf to +inf)

$$z_n = w^T \tilde{x}_n$$

Review: Gradient of LR

$$z_n = w^T \tilde{x}_n$$

Log likelihood

$$J(z_n(w)) = y_n z_n - \log(1 + e^{z_n})$$

Gradient w.r.t. weight on feature f

$$\frac{d}{dw_f}J(z_n(w)) = \frac{d}{dz_n}J(z_n) \cdot \frac{d}{dw_f}z(w)$$

MLP: Composable Functions

Output as function of x

Input data
$$f_1(x,w_1)$$
 $f_2(\cdot,w_2)$ $f_3(\cdot,w_3)$ $f_3(f_2(f_1(x,w_1),w_2),w_3)$

Minimizing loss for composable functions

$$\min_{w_1, w_2, w_3} \sum_{n=1}^{N} loss(y_n, f_3(f_2(f_1(x_n, w_1), w_2), w_3))$$

Loss can be:

- Squared error for regression problems
- Log loss for binary classification problems
- ... many other possibilities!