Logistics

 Project 1: Keep going!

* Coming in <2 weeks: Midterm
« Pen and paper, in class. Bring one sheet of notes

« HW4 out tonight, due in TWO WEEKS



Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Classifiers that use Bayes Theorem, especially
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Many slides attributable to: Prof. Mike Hughes

Erik Sudderth (UCI), Emily Fox (UW),
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)


https://www.cs.tufts.edu/comp/135/2019s/

Objectives Today:
Bayes Theorem & Classification

 Review: Neural Nets

e Two kinds of classifiers
e Discriminative
 Generative

» Bayes Theorem

 Using Bayes Theorem for Classification
» Naive Bayes: Each feature is independent
» “Joint” Bayes: Capture class-specific correlations



What will we learn?

Supervised s B :
Learning , Data, Label Pairs :

__________________________________

N Performance
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Task: Binary Classification

Supervised y is a binary variable
: (red or blue)
Learning
binary
classification 1
L O
2 O
O
O ® o
O O
O
O




Representing multi-class labels
yn € {0,1,2,...C — 1}
Encode as length-C one hot binary vector

y_n: [gnl gnQ gnc y_nC’]

Examples (assume C=4 labels)

class O: 1 0 00
class 1: (01 00
class 2: (0 01 O
class 3: (0 0 0 1



From Vector of Reals
to Vector of Probabilities

Lq — [Zil 3D e Rie e e ZiC’]

R ez’il €Zi2 ez’bc
D; — C C ce e e C
21 21 21
_Zc:l erre Zc:l erre ZC:]_ cmre

called the “softmax” function




MLP: Multi-Layer Perceptron
1 or more hidden layers
followed by 1 output layer

oL
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Diagram of an MLP
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Each Layer Extracts
“Higher Level” Features

m C> Layer 3 . Prediction

Example
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How to train Neural Nets?
Just like logistic regression
Set up a loss function
Apply Gradient Descent!



Output as function of weights

f3(f2(f1($,w1),w2),w3)

fl(xv wl)
falsw2) fy (-, ws)

Input
data
X



Minimizing loss for
composable functions

N

min Zloss(ynaf3(f2(f1(xn7w1)aw2)aw3)

w1, W2,W3
n=1

Loss can be:

« Squared error for regression problems

* Log loss for multi-way classification problems
... many others possible!



Compute loss
via Forward Propagation

For fixed weights, forming w(l) b(l) w(2) b(2)

predictions is easy!

Compute values left to right
1. Inputs: x[1],....x[d]
2. Hidden: v[1],...,v[d]
5. OULPULl Y e ——————— >




Compute loss
via Forward Propagation

For fixed weights, forming w(l) b(l) w(2) b(2)

predictions is easy!

Compute values left to right
1. Inputs: x[1],....x[d]

2. Hidden: v[1],...,v[d]

5. Output: y

Step 2. v = activation(np.dot(wl, x) + bl)



Compute loss
via Forward Propagation

For fixed weights, forming

predictions is easy! (2) b(2)
Compute values left to right
1. Inputs: x[1],....x[d]
2. Hidden: v[1],...,v[d]
5. Output:y

Step - v = activation(np.dot(wl, x) + bl)

Step 3: yhat = np.dot(w2, v) + b2




Compute gradient
via Back Propagation

w® p) 1 (2) p(2)

Goal: Compute gradient - v
wrt weights

aE/dy,
aE/dx,

https://google-developers.appspot.com/ machlne-m

Visual Demo:

2/ N

course/backprop-scroll/



https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

Compute gradient
via Back Propagation

w® p)_ 1 (2) j(2)

Q= r
o— oE _I axj :
0w,-j |6w,-j|

Compute

use inputy_4
from forward
pass

Visual Demo:
https://google-developers.appspot.com/machine
course/backprop-scroll/



https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

Automatic Differentiation
can be done via Backprop!

f = exp(exp(z)

®-{expe

+ exp(z)*) + sin(exp(z

(A

) + exp(z)?)

a’\a@
)

'Pexp (+)

+ 1 (C

df

j:iePal(j)

dIJ\’ =1
Fori=N-1, N —
df
di[.'l' Z

Back Propagation

(Do forward propagation)

2, ...1:

df dg)

_ d.zJ dz;’

Credit: Justin Domke (UMass)
https://people.cs.umass.edu/~domk
e/courses/sml/oogautodiff nnets.pdf



https://people.cs.umass.edu/~domke/courses/sml/09autodiff_nnets.pdf

Objectives Today:
Bayes Theorem & Classification

 Review: Neural Nets

* Two kinds of classifiers
 Discriminative
 Generative

« Bayes Theorem

 Using Bayes Theorem for Classification
* Naive Bayes: Each feature is independent

« “Smarter” Bayes: Capture class-specific correlations
 Quadratic Discriminant Analysis



Recall: Rules of Probability
X

Candidate A  Candidate B
Young voters 0.28 042
Y Senior voters 0.24 006
sum rule p(X) = Zp(X, Y)
v

product rule p(X,Y)=p(Y X)p(X)
= p(X]Y)p(Y)



Kinds of Probabilistic Classifiers

e Discriminative

* Directly learn parameters that define the
label given data distribution p(Y _ y‘ X — x)

Examples: logistic regression, NNs



Kinds of Probabilistic Classifiers

Discriminative

* Directly learn parameters that define the
label given data distribution p(Y _ y‘ X — x)

Examples: logistic regression, NNs

Generative
 Learn parameters for two distributions
* Probability of label plY = y)
 Probability of data given label p(X = :z;]Y = y)

« Combine via Bayes theorem to make predictions



Probabilistic Reasoning

« Two events: headache, flu
« p(H)=1/10

« p(F) =1/40

« p(H|F) =1/2

You wake up with a headache.
What is chance that you have flu?
How to write this is a probability?

Credit: E. Sudderth



Probabilistic Reasoning

« Two events: headache, flu
« p(H)=1/10

« p(F) =1/40

« p(H|F) =1/2

You wake up with a headache.
What is chance that you have flu?
Goal: P(F | H)

Credit: E. Sudderth



Probabilistic Reasoning

« Two events: headache, flu
« p(H)=1/10

« p(F) =1/40

« p(H|F) =1/2

You wake up with a headache.
What is chance that you have flu?
Goal: P(F | H)

Credit: E. Sudderth



Probabilistic Reasoning

« Two events: headache, flu

+ p(H) = 1/10
. p(F) = 1/40 + PH&F)=7
CRHP =12

You wake up with a headache.
What is chance that you have flu?
Goal: P(F | H), but first step: P(H & F)



Probabilistic Reasoning

« Two events: headache, flu

’ p(H) =110 Product rule!

* p(F)=1/40 | . P(H&F)=p(F)p(HIF)

° p(HlF) =1/2 =(1/2) * (1/40) = 1/80
« P(FIH)="?

You wake up with a headache.
What is chance that you have flu?
Goal: P(F | H)



Probabilistic Reasoning

« Two events: headache, flu

. p(H) =110 P(H & F) = p(F) p(H|F)
— =pr)p
* p(F)=1/40 = (1/2) * (1/40) = 1/80
* p(H|F)=1/2 P(F|H) = p(H & F) / p(H)
=(1/80)/(1/10) =1/8
Product rule again!
You wake up with a headache.
What is chance that you have flu?
Goal: P(F | H)=1/8




Probabilistic Reasoning

« Two events: headache, flu

. p(H) =110 P(H & F) = p(F) p(H|F)
— =pr)p
* p(F)=1/40 = (1/2) * (1/40) = 1/80
* p(H|F)=1/2 P(F|H) = p(H & F) / p(H)
=(1/80)/(1/10) =1/8
Product rule again!
You wake up with a headache.
What is chance that you have flu?
Goal: P(F | H)=1/8




Bayes Theorem:

p(X =z|Y =y)p(Y =y)

p(Y =y|X =z) = (X = o)



Bayes Theorem:

p(X =z|Y =y)p(Y =y)

p(Y =ylX ==z) = o(X = o)

p(X =2|Y = y)p(Y =y)

P =) = s X =2y = )

Use sum rule to rewrite the denominator



Bayes Classifier: Prediction

Given: p(Y — y)
p(X = z[Y = y)

Prediction: just plug into Bayes Rule and compute!
p(X =z|Y = y)p(Y =y)

p(Y =ylX =x) =

~

D P X =z|Y =y )p(Y =v)




Bayes Classifiers: Training

1) Estimate the label probability p(Y =y)
How: Just measure empirical frequencies!

Y
estures | bad | #good
X=0 42 15 |
X=1 338 287 |
X=2 3 B

ply) 383/690 | 307/690




Bayes Classifiers: Training

2) Estimate the data-given-label probability

pX =z

2a) Separate features into label-specific datasets

D, = {x0):y0=c)

2b) Estimate a density from the label-specific data
pmf (if x discrete) or pdf (if x continuous)



Bayes Classifiers: Training

2) Estimate the data-given-label probability [p(X =z
2a) Separate features into label-specific datasets

Dcz{x(j):y(j)zc}

Y = y)

2b) Estimate a density from the label-specific data

pmf (if x discrete)

IS | CIEET
X=0 42 15 { y=1)

42/ 15 /307
X=1 338 287 7

383
- 3 > 338 /383 287/307

3/383  5/307
ply) 383/690 | 307/690 / /




Bayes Classifiers: Training

2) Estimate the data-given-label probability
2a) Separate features into label-specific datasets
DC:{x(j);y(i)zc}
2b) Estimate a density from the label-specific data
pdf (if x continuous)

Feature x, !



When x has many features

Feature vector x has 3
binary features, A, B, & C

0O 0 O
Enumerate 0 0 1
all possible ]

0 1 1
values of x:

1 0 0

1 0 1

1 1 0

1 1 1



When x has many features

Feature vector x has 3
binary features, A, B, & C

then assign each
value a class-specific
probability

A
0
0
0
0
1
1
1
1

8
0
0
1
1
0
0
1
1

¢ || piasely1)

= O = O = 0O = O

p(X =z

Y = y)

0.50
0.05
0.01
0.10
0.04
0.15
0.05
0.10




When x has many features

Feature vector x has 3

binary features, A, B, & C
A
0
0
0
then assign each .
value a class-specific )
probability 1

1

8
0
0
1
1
0
0
1

1

o = O = O = O

1

How many values needed for M binary features?
How many for M features that each take K possible values?

pX =a

Y = y)

¢ || piasely1)

0.50
0.05
0.01
0.10
0.04
0.15
0.05
0.10




When x has many features

Feature vector x has 3

binary features, A, B, & C
A
0
0
0
then assign each .
value a class-specific )
probability 1

1

8
0
0
1
1
0
0
1

1

o = O = O = O

1

How many values needed for M binary features? N
How many for M features that each take K possible values? K™M

pX =a

Y = y)

¢ || piasely1)

0.50
0.05
0.01
0.10
0.04
0.15
0.05
0.10

2"M



Rare features

* Suppose in our training data of size 500, one
possible feature vector [0 0 1] never occurs
with label 1, and occurs once with label o.

« What will be the estimated probabilities

« PX=[001] |Y=1)?
« PX=[001] | Y=0)?



Rare features

* Suppose in our training data of size 500, one
possible feature vector [0 0 1] never occurs
with label 1, and occurs once with label o.

« What will be the estimated probabilities?

 PX=[001] |Y=1)? O
* P(X=[001] | Y=0)? small

* (can’t say unless we know how often y=0 occurs)



Strategy to prevent overfitting:
Reduce model complexity

 Model 1:

« Assume nothing about p(X | Y)
* Define joint proba table for all 2" M feature vectors
* Need 2"M numbers for each class y

 Model 2:

 Assume each feature occurs independently

p(X = [z, 22, 23]|]Y =y) = p(X1 = 21|Y = y)IU(Xz = 22|Y = yiP(Xs = z3|Y =y)

« How many numbers needed for each class y?



Strategy to prevent overfitting:
Reduce model complexity

 Model 1:

« Assume nothing about p(X | Y)
* Define joint proba table for all 2" M feature vectors
* Need 2"M numbers for each class y

 Model 2:

« Assume each feature is independent given label

p(X = [z, 22, 23]|]Y =y) = p(X1 = 21|Y = y)IU(Xz = 22|Y = yiP(Xs = z3|Y =y)

« How many numbers needed for each class y? 2 M



Nalve Bayes:

Assume independence to make many features tractable

‘v , alelc | onaciyen |
* Model 1: “Joint Bayes 000 |0s0

0.05
0.01
0.10
0.04
0.15
0.05
0.10

= B =2 0 & o
= = O O = = O
= O = O = O = O

* Model 2: “Naive” Bayes

« Assume each feature occurs independently given label




Nalve Bayes:

Assume independence to make many features tractable

‘v , alelc | onaciyen |
* Model 1: “Joint Bayes 000 |0s0

0.05
0.01
0.10
0.04
0.15
0.05
0.10

= B =2 0 & o
= = O O = = O
= O = O = O = O

* Model 2: “Naive” Bayes

« Assume each feature occurs independently given label




Example: Spam Email Classifier

y & {spam, not spam}
X = observed words in email

~ Ex: [“the” ... “probabilistic” ... “lottery”...]
—~ “1” if word appears; “0” if not

1000’s of possible words: 219008 parameters? if we did full joint model
# of atoms in the universe: = 2270,

Model words given email type as independent
Some words more likely for spam (“lottery™)
Some more likely for non-spam (“probabilistic™)
Only 1000’s of parameters now...



What about real-valued x?



Real-valued x: Gaussian Model

Probability density function: 1 1 2
1 L 252 (x—p)

p(x|p, o) = L

[t mean (any real value)

O standard deviation (positive)

Feature x, !
Easy to estimate class-specific mean and stddev from data



Vector x: Multivariate Gaussian

Probability density function:
. 1 17 1 _ .
Nz ; p,%) = (QW)F/Q\E\ 1’39XP{—;(£—/!)TZ 1(&—/1)}

—

= F x1 mean vector

Y. — F' x F' covariance matrix




Naive Bayes for Vectors x

Assume each feature dimension is independent of others

Probability density functions:

p(r1,22) = p(z1)p(T2)

| 1 | . . 1 1 4
plxy) = 7 exp { 572 (] — ;11)3} plxs) = A oxp{‘ 5 (T — o)

Equivalent to multivariate Gaussians
With diagonal covariance: x,p

p= [ ol

Y — 01 0 1 N
O o) % X)




Naive Bayes for Vectors x

Assume each feature dimension is independent of others

Probability density functions:

p(z1,x2) = p(x1)p(22)

| 1 1 , . 1 1
plxy) = — €Xp {‘7 5 (1 — ;11)‘)} plxe) = = oxp{‘ 5(To — 112)

Equivalent to multivariate Gaussians Cannot capture
With diagonal covariance: x,s correlations
_ e 1y A
po=[u1 p2] | — \

= | I 0 |
0 o % X)



Reducing complexity

Given feature vector with F dimensions
 Full-covariance Gaussian (“Joint Bayes”)

= F x1 mean vector
Y, = F' x F' covariance matrix

» Diagonal-covariance Gaussian (“Naive Bayes”)

How many mean parameters?

How many covariance parameters?



Reducing complexity

Given feature vector with F dimensions
 Full-covariance Gaussian (“Joint Bayes”)

= F x1 mean vector
Y, = F' x F' covariance matrix

» Diagonal-covariance Gaussian (“Naive Bayes”)

How many mean parameters? F

How many covariance parameters? F



Naive Bayes Classifier:
Advantages

* Fast to train
» Just counting with discrete data

 Fast to do prediction at test time
 Easy to interpret parameters
» Few (if any) hyperparameters to tune

 Works well with small data



Naive Bayes Classifier:
Disadvantages

» Assumptions rarely ever justified!

 Not very flexible model



On Discriminative vs. Generative
classifiers: A comparison of logistic
regression and naive Bayes

Andrew Y. Ng Michael I. Jordan
Computer Science Division C.S. Div. & Dept. of Stat.
University of California, Berkeley University of California, Berkeley

Berkeley, CA 94720 Berkeley, CA 94720



Generalization Error vs
Training Set Size
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Comparisons in ISL Ch. 4
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FIGURE 4.11. Bozplots of the test error rates for each of the non-linear sce-

narios described in the main text.




Objectives Today:
Bayes Theorem & Classification

What have we learned?

 Two kinds of classifiers
* Discriminative
 Generative

» Bayes Theorem

 Using Bayes Theorem for Classification
 Naive Bayes: Each feature is independent

» “Joint” Bayes: Capture class-specific correlations

« With full-covariance Gaussians, called Quadratic
Discriminant Analysis



