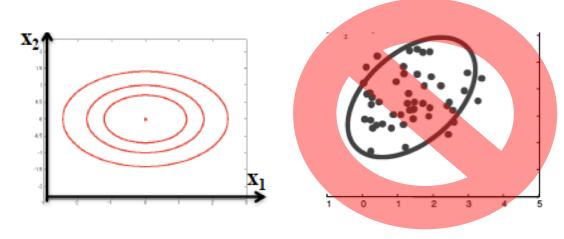
Logistics

- Project 1: Keep going!
- Coming in <2 weeks: Midterm
 - Pen and paper, in class. Bring one sheet of notes
- HW4 out tonight, due in TWO WEEKS

Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

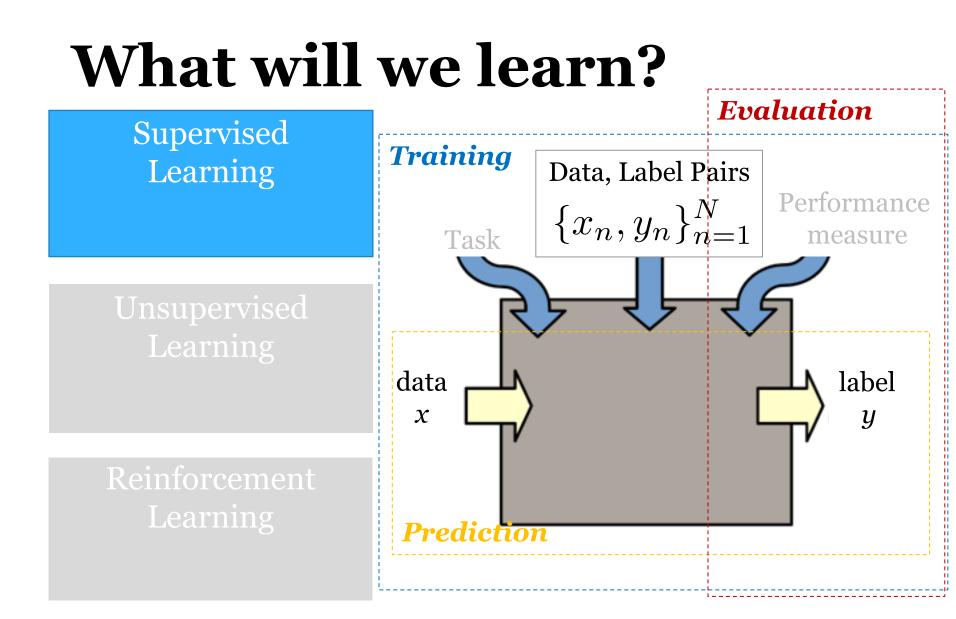
Classifiers that use Bayes Theorem, especially



Many slides attributable to: Erik Sudderth (UCI), Emily Fox (UW), Finale Doshi-Velez (Harvard) James, Witten, Hastie, Tibshirani (ISL/ESL books)

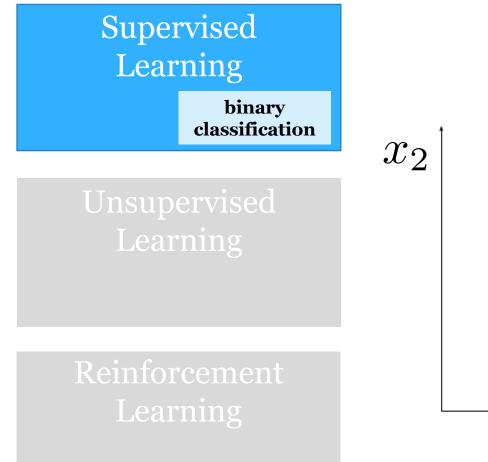
Objectives Today: Bayes Theorem & Classification

- Review: Neural Nets
- Two kinds of classifiers
 - Discriminative
 - Generative
- Bayes Theorem
- Using Bayes Theorem for Classification
 - Naïve Bayes: Each feature is independent
 - "Joint" Bayes: Capture class-specific correlations

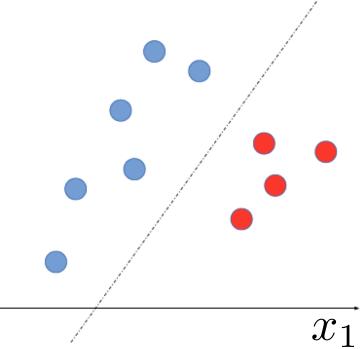


Task: Binary Classification

Y



is a binary variable (<mark>red</mark> or <u>blue</u>)



Representing multi-class labels $y_n \in \{0, 1, 2, \dots C - 1\}$

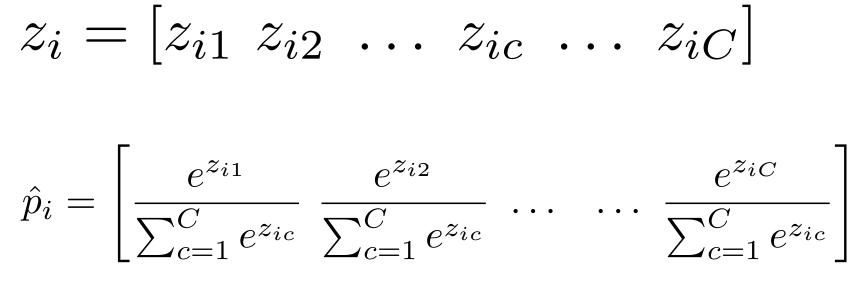
Encode as length-C **one hot binary** vector

$$ar{y}_n = [ar{y}_{n1} \ ar{y}_{n2} \ \dots \ ar{y}_{nc} \ \dots \ ar{y}_{nC}]$$

Examples (assume C=4 labels)

class	0:	[1	0	0	0]
class	1:	[0]	1	0	0]
class	2:	[0]	0	1	0]
class	3:	[0	0	0	1]

From Vector of Reals to Vector of Probabilities



called the "softmax" function

MLP: Multi-Layer Perceptron 1 or more hidden layers followed by 1 output layer

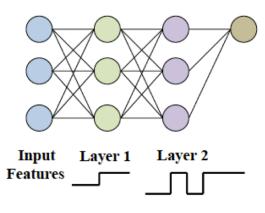
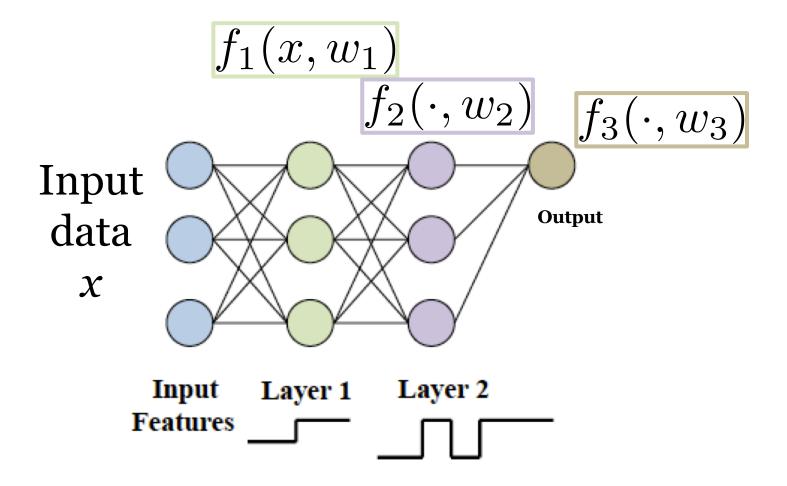
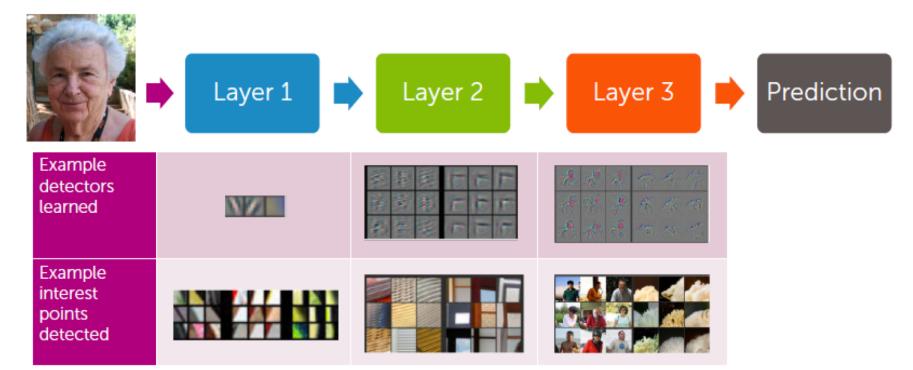


Diagram of an MLP

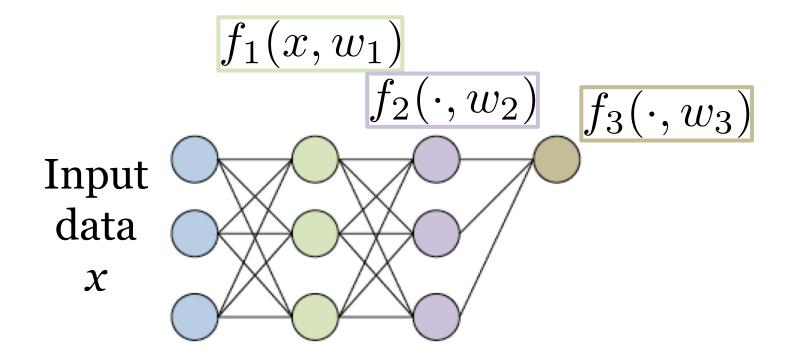


Each Layer Extracts "Higher Level" Features



How to train Neural Nets? Just like logistic regression Set up a loss function Apply Gradient Descent!

Output as function of weights $f_3(f_2(f_1(x, w_1), w_2), w_3)$



Minimizing loss for composable functions

$$\min_{w_1, w_2, w_3} \sum_{n=1}^{N} \operatorname{loss}(y_n, f_3(f_2(f_1(x_n, w_1), w_2), w_3))$$

Loss can be:

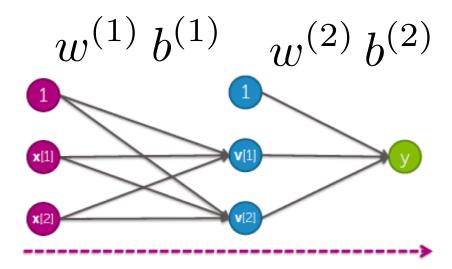
- Squared error for regression problems
- Log loss for multi-way classification problems
- ... many others possible!

Compute loss via Forward Propagation

For fixed weights, forming predictions is easy!

Compute values left to right

- 1. Inputs: x[1],...,x[d]
- 2. Hidden: v[1],...,v[d]
- 3. Output: y

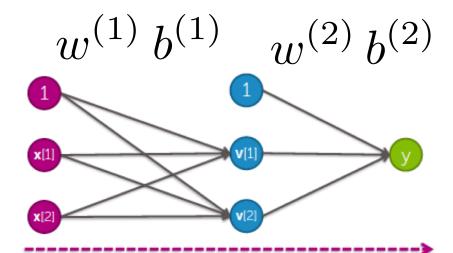


Compute loss via Forward Propagation

For fixed weights, forming predictions is easy!

Compute values left to right

- 1. Inputs: x[1],...,x[d]
- 2. Hidden: **v**[1],...,**v**[d]
- 3. Output: y



Step 2:

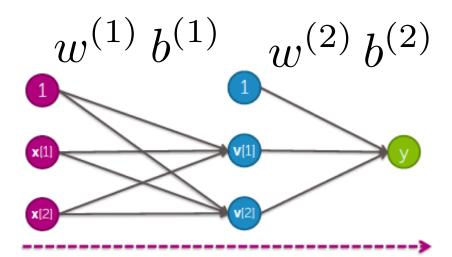
Compute loss via Forward Propagation

For fixed weights, forming predictions is easy!

Compute values left to right

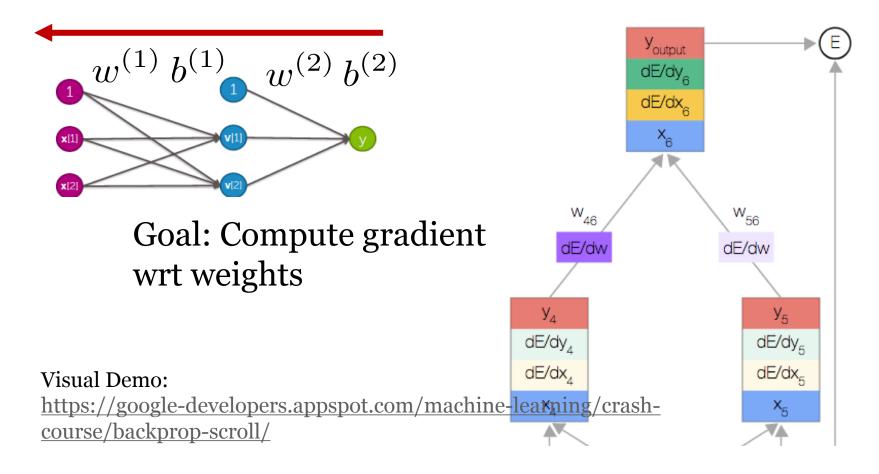
- 1. Inputs: x[1],...,x[d]
- 2. Hidden: v[1],...,v[d]

3. Output: y

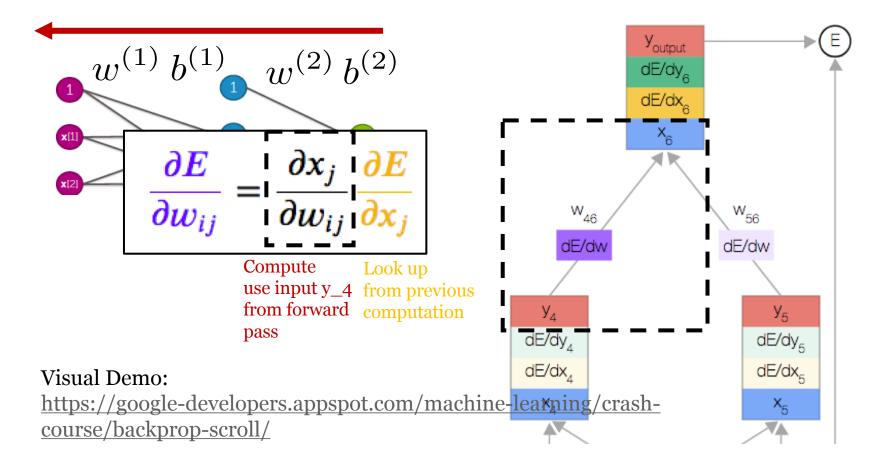


Step 2: Step 3:

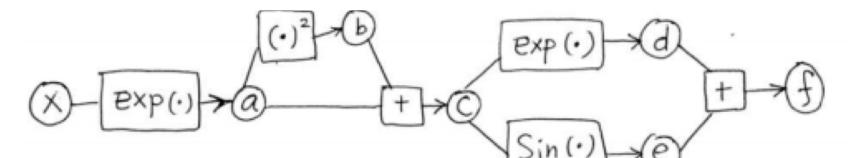
Compute gradient via **Back Propagation**



Compute gradient via **Back Propagation**



Automatic Differentiation can be done via Backprop! $f = \exp(\exp(x) + \exp(x)^2) + \sin(\exp(x) + \exp(x)^2)$



Back Propagation

(Do forward propagation) $\frac{df}{dx_N} \leftarrow 1$ For i = N - 1, N - 2, ... 1: $\frac{df}{dx_i} \leftarrow \sum_{i:i \in P_2(i)} \frac{df}{dx_j} \frac{dg_j}{dx_i}.$

Credit: Justin Domke (UMass)

https://people.cs.umass.edu/~domk e/courses/sml/09autodiff_nnets.pdf

Objectives Today: Bayes Theorem & Classification

• Review: Neural Nets

- Two kinds of classifiers
 - Discriminative
 - Generative
- Bayes Theorem
- Using Bayes Theorem for Classification
 - Naïve Bayes: Each feature is independent
 - "Smarter" Bayes: Capture class-specific correlations
 - Quadratic Discriminant Analysis

Recall: Rules of Probability X

		Candidate A	Candidate B
\mathbf{V}	Young voters	0.28	0.42
Y	Senior voters	0.24	0.06

sum rule $p(X) = \sum_{Y} p(X,Y)$ product rulep(X,Y) = p(Y|X)p(X)= p(X|Y)p(Y)

Kinds of Probabilistic Classifiers

- Discriminative
 - Directly learn parameters that define the label given data distribution p(Y = y | X = x)

Examples: logistic regression, NNs

Kinds of Probabilistic Classifiers

Discriminative

• Directly learn parameters that define the label given data distribution p(Y = y | X = x)

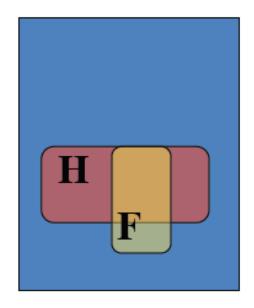
Examples: logistic regression, NNs

Generative

- Learn parameters for two distributions p(Y = y)
 - Probability of label
 - Probability of data given label
- Combine via Bayes theorem to make predictions

p(X = x | Y = y)

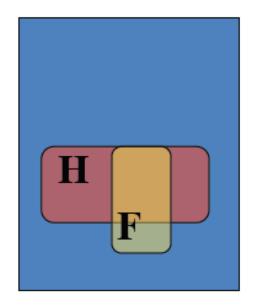
- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2



You wake up with a headache. What is chance that you have flu? How to write this is a probability?

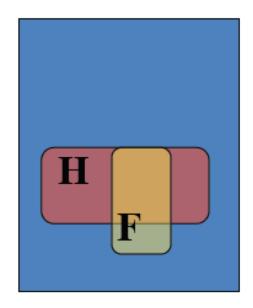
Credit: E. Sudderth

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2



You wake up with a headache. What is chance that you have flu? Goal: P(F | H)

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2



You wake up with a headache. What is chance that you have flu? Goal: P(F | H)

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

You wake up with a headache. What is chance that you have flu? Goal: P(F | H), but **first step: P(H & F)**

Credit: E. Sudderth

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

You wake up with a headache. What is chance that you have flu? Goal: P(F | H)

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

P(H & F) = p(F) p(H|F)= (1/2) * (1/40) = 1/80 P(F|H) = p(H & F) / p(H)= (1/80) / (1/10) = 1/8

Product rule again!

You wake up with a headache. What is chance that you have flu? Goal: P(F | H) = 1/8

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

P(H & F) = p(F) p(H|F)= (1/2) * (1/40) = 1/80 P(F|H) = p(H & F) / p(H)= (1/80) / (1/10) = 1/8

Product rule again!

You wake up with a headache. What is chance that you have flu? Goal: P(F | H) = 1/8

Bayes Theorem:

$$p(Y = y | X = x) = \frac{p(X = x | Y = y)p(Y = y)}{p(X = x)}$$

Bayes Theorem:

$$p(Y = y | X = x) = \frac{p(X = x | Y = y)p(Y = y)}{p(X = x)}$$

$$p(Y = y | X = x) = \frac{p(X = x | Y = y)p(Y = y)}{\sum_{y'} p(X = x, Y = y')}$$

Use sum rule to rewrite the denominator

Bayes Classifier: Prediction

Given: p(Y = y)p(X = x | Y = y)

Prediction: *just plug into Bayes Rule and compute!*

$$p(Y = y | X = x) = \frac{p(X = x | Y = y)}{\sum_{y'} p(X = x | Y = y')} \frac{p(Y = y)}{p(Y = y')}$$

Bayes Classifiers: Training

1) Estimate the label probability p(Y = y)How: Just measure empirical frequencies!

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

Y

		· · · · · · · · · · · · · · · · · · ·
p(y)	383/690	307/690

Bayes Classifiers: Training

1) Estimate the label probability How: Just measure empirical frequencies!

2) Estimate the data-given-label probability p(X = x|Y = y)2a) Separate features into label-specific datasets

 $D_c = \{ x^{(j)} : y^{(j)} = c \}$

2b) Estimate a density from the label-specific data pmf (if x discrete) or pdf (if x continuous)

Bayes Classifiers: Training

2) Estimate the data-given-label probability p(X = x|Y = y)
 2a) Separate features into label-specific datasets
 D_c = { x^(j) : y^(j) = c }

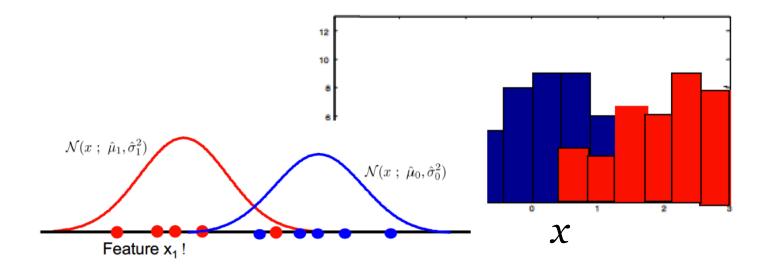
2b) Estimate a density from the label-specific data **pmf (if x discrete)** or pdf (if x continuous)

Features	# bad	# good		p(x	p(x
X=0	42	15	,	y=0)	y=1)
X=1	338	287	_,	> 42 / 383	15 / 307
X=2	3	5		338 / 383	287 / 307
p(y)	383/690	307/690		3 / 383	5 / 307
P(9)	363/090	307/090			

Bayes Classifiers: Training

2) Estimate the data-given-label probability 2a) Separate features into label-specific datasets D_c = { x^(j) : y^(j) = c }

2b) Estimate a density from the label-specific data **pmf (if x discrete) or pdf (if x continuous)**



Mike Hughes - Tufts COMP 135 - Spring 2019

Feature vector x has 3 binary features, A, B, & C

> Enumerate all possible values of x:

Feature vector x has 3 binary features, A, B, & C

Enumerate all possible values of x, then assign each value a class-specific probability

$$p(X = x | Y = y)$$

Α	В	С	p(A,B,C y=1)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

Feature vector x has 3 binary features, A, B, & C

Enumerate all possible values of x, then assign each value a class-specific probability

$$p(X = x | Y = y)$$

A	B	С	p(A,B,C y=1)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

How many values needed for M binary features? How many for M features that each take K possible values? Mike Hughes - Tufts COMP 135 - Spring 2019

Feature vector x has 3 binary features, A, B, & C

Enumerate all possible values of x, then assign each value a class-specific probability

$$p(X = x | Y = y)$$

A	B	С	p(A,B,C y=1)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

How many values needed for M binary features? 2[^]M How many for M features that each take K possible values? K[^]M Mike Hughes - Tufts COMP 135 - Spring 2019 41

Rare features

- Suppose in our training data of size 500, one possible feature vector [0 0 1] never occurs with label 1, and occurs once with label 0.
- What will be the estimated probabilities
 - $P(X = [0 \ 0 \ 1] | Y = 1)?$
 - $P(X = [0 \ 0 \ 1] | Y = 0)?$

Rare features

- Suppose in our training data of size 500, one possible feature vector [0 0 1] never occurs with label 1, and occurs once with label 0.
- What will be the estimated probabilities?
 - $P(X = [0 \ 0 \ 1] | Y = 1)?$ 0
 - $P(X = [0 \ 0 \ 1] | Y = 0)$? small
 - (can't say unless we know how often y=0 occurs)

Strategy to prevent overfitting: Reduce model complexity

- Model 1:
 - Assume nothing about p(X | Y)
 - Define joint proba table for all 2^M feature vectors
 - Need 2^M numbers for each class y
- Model 2:
 - Assume each feature occurs independently

 $p(X = [x_1, x_2, x_3]|Y = y) = p(X_1 = x_1|Y = y)p(X_2 = x_2|Y = y)p(X_3 = x_3|Y = y)$

• How many numbers needed for each class y?

Credit: E. Sudderth

Strategy to prevent overfitting: Reduce model complexity

- Model 1:
 - Assume nothing about p(X | Y)
 - Define joint proba table for all 2^M feature vectors
 - Need 2^M numbers for each class y
- Model 2:
 - Assume each feature is independent given label

 $p(X = [x_1, x_2, x_3]|Y = y) = p(X_1 = x_1|Y = y)p(X_2 = x_2|Y = y)p(X_3 = x_3|Y = y)$

- How many numbers needed for each class y? 2 M

Credit: E. Sudderth

Naïve Bayes:

Assume independence to make many features tractable

• Model 1: "Joint Bayes"

Α	В	С	p(A,B,C y=1)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

- Model 2: "Naïve" Bayes
 - Assume each feature occurs independently given label

Credit: E. Sudderth

Naïve Bayes:

Assume independence to make many features tractable

• Model 1: "Joint Bayes"

A	В	С	p(A,B,C y=1)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

- Model 2: "Naïve" Bayes
 - Assume each feature occurs independently given label

Example: Spam Email Classifier

 $y \in \{spam, not spam\}$

X = observed words in email

- Ex: ["the" ... "probabilistic" ... "lottery"...]
- "1" if word appears; "0" if not

1000's of possible words: 2^{1000s} parameters? *if we did full joint model* # of atoms in the universe: $\approx 2^{270}$...

Model words *given* email type as independent Some words more likely for spam ("lottery") Some more likely for non-spam ("probabilistic") Only 1000's of parameters now...

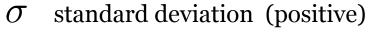
What about real-valued x?

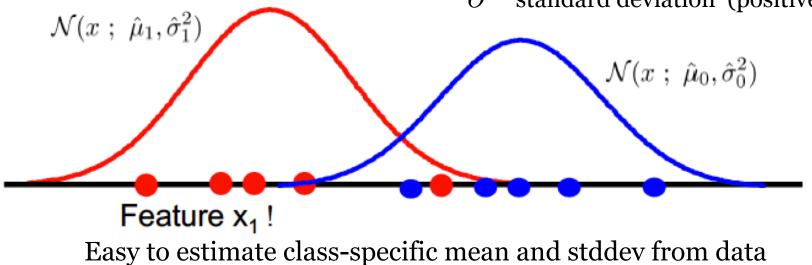
Real-valued *x*: Gaussian Model

Probability density function:

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma^2} e^{-\frac{1}{2}\frac{1}{\sigma^2}(x-\mu)^2}$$

mean (any real value) μ





Credit: E. Sudderth

Vector x: Multivariate Gaussian

Probability density function:

$$\mathcal{N}(\underline{x} \; ; \; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{F/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \Sigma^{-1}(\underline{x} - \underline{\mu})\right\}$$

$$\mu = F \times 1 \text{ mean vector}$$

$$\Sigma = F \times F \text{ covariance matrix}$$

$$\sum_{q = 1}^{2} F \times F \text{ covariance matrix}$$

$$\sum_{q = 1}^{2} F \times F \text{ covariance matrix}$$

Credit: E. Sudderth

Naïve Bayes for Vectors x

Assume each feature dimension is **independent** of others

Probability density functions:

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$p(x_1) = \frac{1}{Z} \exp\left\{-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right\} \qquad p(x_2) = \frac{1}{Z_2} \exp\left\{-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right\}$$

Equivalent to multivariate Gaussians With diagonal covariance:

$$\mu = [\mu_1 \ \mu_2]$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

Credit: E. Sudderth

Naïve Bayes for Vectors x

Assume each feature dimension is **independent** of others

Probability density functions:

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$p(x_1) = \frac{1}{Z} \exp\left\{-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right\} \qquad p(x_2) = \frac{1}{Z_2} \exp\left\{-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right\}$$

Equivalent to multivariate Gaussians With diagonal covariance:

$$\mu = \begin{bmatrix} \mu_1 & \mu_2 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

Credit: E. Sudderth

Mike Hughes - Tufts COMP 135 - Spring 2019

Cannot capture

correlations

Reducing complexity

Given feature vector with F dimensions

• Full-covariance Gaussian ("Joint Bayes")

$$\mu = F \times 1$$
 mean vector
 $\Sigma = F \times F$ covariance matrix

• Diagonal-covariance Gaussian ("Naïve Bayes")

How many mean parameters?

How many covariance parameters?

Reducing complexity

Given feature vector with F dimensions

• Full-covariance Gaussian ("Joint Bayes")

$$\mu = F \times 1 \text{ mean vector}$$
$$\Sigma = F \times F \text{ covariance matrix}$$

• Diagonal-covariance Gaussian ("Naïve Bayes")

How many mean parameters? F

How many covariance parameters? F

Naïve Bayes Classifier: Advantages

- Fast to train
 - Just counting with discrete data
- Fast to do prediction at test time
- Easy to interpret parameters
- Few (if any) hyperparameters to tune
- Works well with *small data*

Naïve Bayes Classifier: Disadvantages

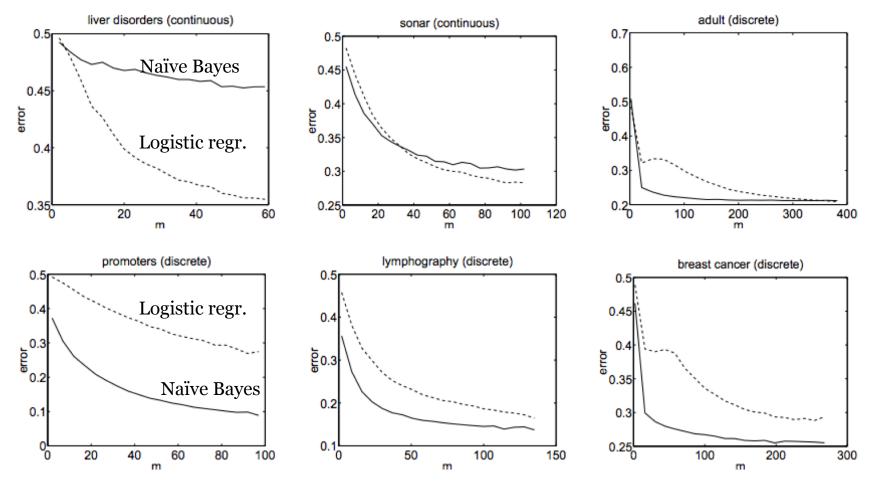
- Assumptions rarely ever justified!
- Not very flexible model

On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes

Andrew Y. Ng Computer Science Division Berkeley, CA 94720

Michael I. Jordan C.S. Div. & Dept. of Stat. University of California, Berkeley University of California, Berkeley Berkeley, CA 94720

Generalization Error vs Training Set Size



Comparisons in ISL Ch. 4

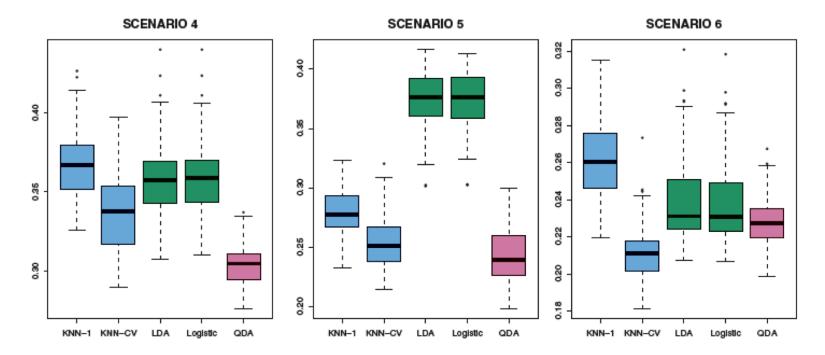


FIGURE 4.11. Boxplots of the test error rates for each of the non-linear scenarios described in the main text.

Objectives Today: Bayes Theorem & Classification

What have we learned?

- Two kinds of classifiers
 - Discriminative
 - Generative
- Bayes Theorem
- Using Bayes Theorem for Classification
 - Naïve Bayes: Each feature is independent
 - "Joint" Bayes: Capture class-specific correlations
 - With full-covariance Gaussians, called Quadratic Discriminant Analysis