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Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Many slides attributable to:
Erik Sudderth (UCI), Emily Fox (UW),
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Prof. Mike Hughes

https://www.cs.tufts.edu/comp/135/2019s/


Unit Objectives
Summary of Deep Learning: pros and cons

Ways to improve heldout performance:
• Data Augmentation
• Early stopping
• Convolutions
• Dropout

Ways to select hyperparameters
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The basic unit of neural networks for regression/classification
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Deep Learning
Using neural networks to learn feature representations

Big ideas:
• Flexible Models from simple, easy-to-connect pieces

• Simplest piece: linear weights + non-linear activation
• Add layers! Add more units per layer!

• Focus on model, not algorithm
• Use the same “universal” algorithm: back-propagation
• Use automatic differentiation to compute gradients

• Scalability
• Stochastic gradient descent for large datasets
• GPUs make linear weights (matrix multiply) very fast
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PROs                    CONs?
• Flexible models
• State-of-the-art 

success in many 
applications
• Object recognition
• Speech recognition
• Language models

• Open-source software
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Deep Neural Nets



Two kinds of optimization 
problem
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Convex
Only one global minimum
If GD converges, solution is best 
possible

Non-Convex
One or more local minimum
GD solution might be much worse 
than global minimum
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Convex
Only one global minimum
If GD converges, solution is best 
possible

Non-Convex
One or more local minimum
GD solution might be much worse 
than global minimum

Deep Neural Nets: 
Optimization is not convex

MLPs with 1+ hidden layers
Deep NNs in general

Linear regression
Logistic regression
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Convex
Only one global minimum
If GD converges, solution is best 
possible

Non-Convex
One or more local minimum
GD solution might be much worse 
than global minimum

Deep Neural Nets: 
Optimization is not convex

MLPs with 1+ hidden layers
Deep NNs in general

Linear regression
Logistic regression

Explore this 
in HW4!



How many hyperparameters?
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Many hyperparameters for a 
Deep Neural Network (MLP)

• Num. layers
• Num. units / layer
• Activation function
• L2 penalty strength

• Learning rate
• Batch size
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Control 
complexity

Optimization
quality/speed



Will it generalize?
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Familiar input: what we want
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Network trained to recognize digits 0-9



Unfamiliar input: what we want
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Network trained to recognize digits 0-9



Unfamiliar input: typical result

14Mike Hughes - Tufts COMP 135 - Spring 2019

Network trained to recognize digits 0-9



PROs                    CONs
• Flexible models
• State-of-the-art 

success in many 
applications
• Object recognition
• Speech recognition
• Language models

• Open-source software

• Require lots of data
• Many tuning params
• Each run of SGD can

take hours/days
• Optimization not easy

• Will it converge?
• Is local minimum

enough?
• Hard to extrapolate
• Will it overfit?
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Deep Neural Nets



Overfitting?
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2012 ImageNet Challenge Winner
ImageNet challenge
1000 categories, 1.2 million images in training set

How to learn 60 million parameters
from 1 million examples?



NN Tricks to avoid overfitting

•Gather more data
•Data augmentation

•Modify optimization
•Early stopping

•Reduce model complexity
•Convolutions 
•Dropout

18Mike Hughes - Tufts COMP 135 - Spring 2019



Data Augmentation:
Gather more (artificial) data
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Credit: Bharath Raj (medium.com post)

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced


Data Augmentation
Data Augmentation: Increase effective size of 
training dataset by applying perturbations to 
existing features x to create new (x’, y) pairs

Choose perturbations which do not change label.
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Images
• Flip left-to-right
• Slight rotations or crops
• Recolor or brighten

Text
• Add slight misspellings
• Replace word with similar 

word

from AlexNet paper (Krizhevsky et al. NIPS 2012)



Reduce overfitting
by modifying optimization
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Credit: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping

Big idea: stop training after your heldout set stops improving
• Avoid overfitting
• Save time / compute resources

Early Stopping

could be accuracy,
area under ROC,
Recall, precision,
whatever you care about 

https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping


Reduce overfitting
by reducing complexity
(via domain-relevant 
architectures)

23Mike Hughes - Tufts COMP 135 - Spring 2019



Convolutional Neural 
Networks (CNNs) for images
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Goal: learn feature 
representations that:
• Represent high-level 

information
• “objects” and “parts”

• Invariant to translation
• object could appear 

anywhere

Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial
https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf

https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf


Basic 2D Convolution 
Operation
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Slide same “small window” with 
fixed weights
across entire image

Each output value depends on 
small subset of input 

Advantages
• Fewer parameters to learn
• Can detect same pattern in any 

position in the image

input

output



Example Convolution in 2D
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Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial
https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf

https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf


Reduce overfitting
by reducing complexity
(via parameter dropout)
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Existing complexity penalties

• L2 penalty

• L1 penalty

• Max norm
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X

f

w2
f < c

After each update,
enforce:



Dropout
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Sample present/absent at train,
downweight at test

30

In practice, often set dropout probabilities:
• 50% for hidden units
• 20% for input units

Credit: Srivastava et al. JMLR 2014



Dropout on MNIST
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Credit: Srivastava et al. JMLR 2014



Dropout Benefits

• MNIST images
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Credit: Srivastava et al. JMLR 2014

Decent gains on many tasks (images, genes, sequences)
• over other regularization (L1/L2) and other models

lower
is better
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Summary of Deep Learning: pros and cons

Ways to improve heldout performance:
• Data Augmentation
• Early stopping
• Convolutions
• Dropout

Ways to select hyperparameters

Unit Objectives



Hyperparameters for a 
Deep Neural Network (MLP)

• Num. layers
• Num. units / layer
• Activation function
• L2 penalty strength
• Dropout probability

• Learning rate
• Batch size
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Control 
complexity

Optimization
quality/speed



Guidelines: complexity params
• Num. units / layer
• Start with similar to num. features
• Add more (logspace) until serious overfitting

• Num. layers
• Start with 1
• Add more (+1 at a time) until serious overfitting

• L2 penalty strength scalar
• Try range of logspace values 

• Activation function
• ReLU for most problems is reasonable
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Grid Search

• List possible values of each hyperparameter

• Try out all H1 x H2 x … x H5 combinations
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Can yield impossibly large number of combinations
but, testing combinations can be parallelized

Step size/learning rate

Number of hidden units



Random Search
• Define probability distribution over all  

hyperparameter configurations
• Often, assume each parameter is independent

• Draw samples from joint configuration space
• Choose best of T samples
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Each trial can be parallelized
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Random Search covers more of 
the important “lower dim. space”

Credit: Bergstra & Bengio JMLR 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a


8 random trials beats 100 grid 
search trials on MNIST digits
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Grid search over 100 
configs

Credit: Bergstra & Bengio JMLR 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a


Sequential Optimization
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Credit: Bergstra et al. NeurIPS 2011
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-
optimization.pdf

Fixed budget of T trials, search for best hyperparameters x based 
on a predictive model 

https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf


Hyperopt Toolbox

41Mike Hughes - Tufts COMP 135 - Spring 2019

https://www.youtube.com/watch?v=Mp1xnPfE4PY

https://github.com/hyperopt/hyperopt/wiki/FMin

https://www.youtube.com/watch?v=Mp1xnPfE4PY
https://github.com/hyperopt/hyperopt/wiki/FMin
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PROJECT 2: 
Text Sentiment Classification
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Sentiment Analysis

• Question: How to represent text reviews?
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Friendly staff, good
tacos, and fast service. 
What more can you look
for at taco bell?

�(xn)?
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Bag-of-words representation

Text

count vector
over large (fixed-size) 

vocabulary

Friendly staff, good
tacos, and fast service. 
What more can you look
for at taco bell?

tacos
fast

taco
look

tacos

fast

staff

dinosaur

stegosaurus

original data unordered “bag”
of vocab symbols

friendly

service

bell
staff

2
1 1



Word Embeddings (word2vec)
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Goal: map each word in vocabulary to high-dimensional vector
• Preserve semantic meaning in this new vector space

vec(swimming) – vec(swim) + vec(walk) = vec(walking)
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Word Embeddings (word2vec)
Goal: map each word in vocabulary to high-dimensional vector
• Preserve semantic meaning in this new vector space



How to embed?
Training
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Reward embeddings that predict nearby words 
in the sentence.
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Goal: learn weights

Credit: 
https://www.tensorflow.org/tutorials/representation/word2vec

3.2

-4.1

7.1

fixed vocabulary
typical  1000-100k

W =

W

https://www.tensorflow.org/tutorials/representation/word2vec
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What features are best?
What classifier is best?
What hyperparameters are best?

PROJECT 2: 
Text Sentiment Classification


