Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Hyperparameters
and overtitting

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Many slides attributable to: Prof. Mike Hueh
Erik Sudderth (UCI), Emily Fox (UW), Ot © Hushes

Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

https://www.cs.tufts.edu/comp/135/2019s/

Unit Objectives

Summary of Deep Learning: pros and cons

Ways to improve heldout performance:
» Data Augmentation

 Early stopping

» Convolutions

* Dropout

Ways to select hyperparameters

Simple Many-to-one Neuron

The basic unit of neural networks for regression/classification

W1 b
T Noglin§ar ‘
nl Activation Function
(tanh/sigmoid/ReLu)
w9 1
Ln?2 I ——> 2
_'6 - _'2 o ; L é COllld be final
w 3 output,
OR
ZIJ n 3 \A fed into to another
> layer!

Deep Learning

Using neural networks to learn feature representations

Big ideas:

 Flexible Models from simple, easy-to-connect pieces
 Simplest piece: linear weights + non-linear activation
 Add layers! Add more units per layer!

» Focus on model, not algorithm
 Use the same “universal” algorithm: back-propagation
« Use automatic differentiation to compute gradients

 Scalability
 Stochastic gradient descent for large datasets
« GPUs make linear weights (matrix multiply) very fast

Deep Neural Nets
PROs CONSs?

* Flexible models

» State-of-the-art
success In many
applications

 Object recognition
 Speech recognition
« Language models

* Open-source software

Two kinds of optimization
problem

A A
ocal minimum
Global minimum Global minimum
> >
Convex Non-Convex
Only one global minimum One or more local minimum

If GD converges, solution is best ~ GD solution might be much worse
possible than global minimum

Deep Neural Nets:
Optimization 1s not convex

Linear regression
i Logistic regression

Global minimum

Convex
Only one global minimum
If GD converges, solution is best
possible

MLPs with 1+ hidden layers
Deep NNs in general

ocal minimum

Global minimum

>

Non-Convex
One or more local minimum
GD solution might be much worse
than global minimum

Deep Neural Nets:
Optimization 1s not convex

Linear regression
i Logistic regression

Global minimum

Convex
Only one global minimum
If GD converges, solution is best
possible

MLPs with 1+ hidden layers
A Deep NNs in general

Explore this
in HWy4!

ocal minimum

Global minimum

>

Non-Convex
One or more local minimum
GD solution might be much worse
than global minimum

How many hyperparameters?

Many hyperparameters for a
Deep Neural Network (MLP)

* Num. layers

« Num. units / layer Control
» Activation function

L2 penalty strength COmpleXIty

— Optimization
* Learning rate)
- Batch size quality/speed

Will it generalize?

Familiar input: what we want

Network trained to recognize digits 0-9

Unfamiliar input: what we want

input convi pooli conv2 pool2 hiddend

N \ 5 |11 0.30
el L::ﬂ 9 (M o.2s8
- ‘ 3 [o26

Network trained to recognize digits 0-9

Unfamiliar input: typical result

nnnnnnnnnn pooli convZ pool2 hiddend output

S\

Network trained to recognize digits 0-9

Deep Neural Nets
PROs CONs

* Flexible models » Require lots of data

- State-of-the-art « Many tuning params
succigss 10 many e Each run of SGD can
applications take hours/days

 Object recognition
 Speech recognition
« Language models

* Optimization not easy
« Will it converge?

. r * Is local minimum
Open-source sottware enough?

« Hard to extrapolate
» Will it overfit?

Overtitting?

2012 ImageNet Challenge Winner

ImageNet challenge
1000 categories, 1.2 million images in training set

8 layers, 60M parameters [Krizhevsky et al. '12]

AlexNet

\ h 2 5 i \) ‘ " . :
R Y \ \ \13 \13 \ \13
1R W& I ~ ’ { \ =))) \
' \ % i JE
IR A K 1-1 -3 K~ - e b
10 N g - ™ | 13 \ o 1 13 1 1% 3 |dense dense
: A F \ 27 \ -\ i \ -1
224 5\ \ 'y \ - 41 .
\ \ 384 \ 384 \ 56 Tl
l - Max - |
! . — Max pooling 43¢ oo
J pooling

How to learn 60 million parameters
from 1 million examples?

NN Tricks to avoid overtfitting

e Gather more data
* Data augmentation

* Modify optimization
» Early stopping
* Reduce model complexity

e Convolutions
* Dropout

Data Augmentation:
Gather more (artificial) data

N D . /
% | B
S) Y
)38 &\ | 8
s) L ‘\
'&z @; &
\
? 2l | B

Enlarge your Dataset

Credit: Bharath Raj (medium.com post)

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

Data Augmentation

Data Augmentation: Increase effective size of

training dataset by applying perturbations to
existing features x to create new (x’, y) pairs

Choose perturbations which do not change label.

Images Text

 Flip left-to-right « Add slight misspellings

« Slight rotations or crops « Replace word with similar
« Recolor or brighten word

This scheme approximately captures an important property of natural images,
namely that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

from AlexNet paper (Krizhevsky et al. NIPS 2012)

Reduce overtitting
by modifying optimization

Early Stopping

>

Training Set Accuracy

Accuracy

Overfitting

l could be accuracy,
area under ROC,

Recall, precision,

whatever you care about

Test Set Accuracy Early Stopping

Epoch

>
Epoch

Big idea: stop training after your heldout set stops improving
 Avoid overfitting
« Save time / compute resources

Credit: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping

https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping

Reduce overfitting

by reducing complexity
(via domain-relevant
architectures)

Convolutional Neural
Networks (CNNs) for images

B

’ — '
_—

okp B Goal: learn feature

8 representations that:

* Represent high-level
information

ars * “objects” and “parts”
 Invariant to translation
Edges/blobs o ghject could appear
anywhere
Input pixels

Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial
https://www.cs.cmu.edu/~morency/ MMM L-Tutorial-ACL.2017.pdf

https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf

Basic 2D Convolution

Operation

output

input

Slide same “small window” with
fixed weights
across entire image

Each output value depends on
small subset of input

Advantages

» Fewer parameters to learn

» (Can detect same pattern in any
position in the image

Example Convolution in 2D

Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial
https://www.cs.cmu.edu/~morency/ MMM L-Tutorial-ACL2017.pdf

https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf

Reduce overfitting
by reducing complexity
(via parameter dropout)

Existing complexity penalties

L2 penalty e Max norm

After each update,

enforce: Zw? < ¢
f

L1 penalty

Dropout

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISHECS. TORONTO.EDU
Geoffrey Hinton HINTON@CS. TORONTO.EDU
Alex Krizhevsky KRIZECS. TORONTO.EDU
Ilya Sutskever ILYA@CS. TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS. TORONTO.EDU

(b) After applying dropout.

Credit: Srivastava et al. JMLR 2014

Sample present/absent at train,
downweight at test

W

Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time,

In practice, often set dropout probabilities:
 50% for hidden units
« 20% for input units

Credit: Srivastava et al. JMLR 2014

Dropout on MNIST

T

I

Without dropout

20

-

T -]
4 With dropout

1.0% RN -

0 200000 L0000 S00000 B0CGOD 1000000
Numter of meight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units,

Credit: Srivastava et al. JMLR 2014

Dropout Benefits

Decent gains on many tasks (images, genes, sequences)
 over other regularization (L1/L2) and other models

« MNIST images

Method Test Classification error %
L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55 lower
Max-norm 1.35 1

1 r
Dropout + L2 1.25 S bette
Dropout 4+ Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

Credit: Srivastava et al. JMLR 2014

Unit Objectives

Summary of Deep Learning: pros and cons

Ways to improve heldout performance:
» Data Augmentation

 Early stopping

» Convolutions

* Dropout

Ways to select hyperparameters

Hyperparameters for a
Deep Neural Network (MLP)

« Num. layers

« Num. units / layer

* Activation function
L2 penalty strength
* Dropout probability

* Learning rate
e Batch size

Control
complexity

Optimization
quality/speed

Guidelines: complexity params

« Num. units / layer
o Start with similar to num. features
» Add more (logspace) until serious overfitting

* Num. layers
e Start with 1
« Add more (+1 at a time) until serious overfitting

L2 penalty strength scalar
 Try range of logspace values

» Activation function
« ReLU for most problems is reasonable

Grid Search

» List possible values of each hyperparameter

Step size/learningrate ~ {0.1,0.01,1072,107%,107°}
Number of hidden units {50, 100, 200, 500, 1000, 2000}

* Try out all H1 x H2 x ... x H5 combinations

Can yield impossibly large number of combinations
but, testing combinations can be parallelized

Random Search

* Define probability distribution over all
hyperparameter configurations
 Often, assume each parameter is independent

« Draw samples from joint configuration space
* Choose best of T samples

number of hidden units was drawn geometrically® from 18 to 1024.

sigmoidal or tanh nonlinearity with equal probability

learning rate €y drawn geometrically from 0.001 to 10.0

Each trial can be parallelized

Random Search covers more of
the important “lower dim. space”

Grid Layout Random Layout
g 3
@ QQ
= £
M (1)
% s
o Q.
- +
= c
= £
5 o
3 3
= O (@] O =
- e |

Important parameter Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f(x,y) = g(x) + A(y) =
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square A(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional

hyper-parameter optimization. . .
Credit: Bergstra & Bengio JMLR 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a

8 random trials beats 100 grid
search trials on MNIST digits

1.0

09

08

accuracy
e o -
W= -1

o
o

mnist rotated

o
(=)}
T

T3 ; =—] Grid search over 100

= 1 configs

|35viC

2 4 8 16 32
experiment size (# trials)
Credit: Bergstra & Bengio JMLR 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a

Sequential Optimization

Fixed budget of T trials, search for best hyperparameters x based
on a predictive model

SMBO(f, My, T, S)
1 H « 0,
2 Fort+ 1to T,
3 z* argmin, S(z, M;_;),
4 Evaluate f(z*), > Expensive step
5 H+— HU (z*, f(z*)),
6 Fit a new model M; to H.
7 return

Figure 1: The pseudo-code of generic Sequential Model-Based Optimization.

Credit: Bergstra et al. NeurIPS 2011
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-
optimization.pdf

https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

Hyperopt Toolbox

https://www.youtube.com/watch?v=MpixnPfE4PY

https://github.com/hyperopt/hyperopt/wiki/FMin

hyperopt fmin, tpe, rand, hp

def loss(x):
Xkk2

best_rand_search = fmin(fn-1loss,
space=hp.uniform('x', -10, 10),
algo-rand.suggest,
max_evals=100)

best_tpe_search = fmin(fn-1loss,
space=hp.uniform('x', -10, 10),
algo-tpe.suggest,
max_evals=100)

https://www.youtube.com/watch?v=Mp1xnPfE4PY
https://github.com/hyperopt/hyperopt/wiki/FMin

Hyperopt-Sklearn: Automatic Hyperparameter

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Configuration for Scikit-Learn

Brent Komer**, James Bergstra*, Chris Eliasmith*

RF: Randon Forest Classifier PCA:

ENN: E-Nearest Nedghbors TFIDF:

SV Support Vector Classifier 55:
ET: Extra Trees Classifier MMS :
SG0D: Stochastic Gradient Descent N:
MNE: Multinomial Naive Bayes

Principal Component Analysis
Tern Frequency - Inv Doc Freq
Standard Scaler

Min Max Scaler

Normalizer

- - a
l None (0) ' l N (1) “ MMS (1) l- TFIDF (0)

7

=o = E=n =0 =2

-[RF ®)) (sve () (eT(8)) (_%‘0@ [ﬁ:ﬁ
g N

(RNN) (‘sigmoid (5))((Poly (7)) (ReF (5)) (Linear (4))
v
.

BUtO

PROJECT 2:
Text Sentiment Classification

Experience

Sample review:

Watching the chefs create
incredible edible art made

the experience very unique.

My wife tried their ramen

and it was pretty forgettable.

All the sushi was delicious!
Easily best sushi in Seattle.

Sentiment Analysis

* Question: How to represent text reviews?

Friendly staff, good
tacos, and fast service.

for at taco bell?

What more can you look

4

?

Bag-of-words representation

Text

original data

Friendly staff, good
tacos, and fast service.
What more can you look
for at taco bell?

unordered “bag”
of vocab symbols

e e

|

|

| 4

tacos

fast

taco friendly

look

service

bell

staff

count vector
over large (fixed-size)
vocabulary

2

Word Embeddings (word2vec)

Goal: map each word in vocabulary to high-dimensional vector
Preserve semantic meaning in this new vector space

L) 1

aan walked

o) @]

. g i wWOman —
king o O o

- walking

® queen
— O —
awimming
Male-Female Verb tense

vec(swimming) — vec(swim) + vec(walk) = vec(walking)

Word Embeddings (word2vec)

Goal: map each word in vocabulary to high-dimensional vector
* Preserve semantic meaning in this new vector space

Italy --__‘~‘__~_-~h~§“~§§uadrid

Germany s Rome
Berlin
Turkey ~—-________-_--N
Ankara
Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital

How to embed?

Goa.

W =

embedding dimensions

typical 100-1000

: learn weights

7.1
3.2
4.1
¥ N~ % S
2 %
e %

fixed vocabulary
typical 1000-100k

Training

Reward embeddings that predict nearby words

in the sentence.

A 4

Softmax classifier

() () W) (W

Hidden layer

W

‘M piom Agueau joipaud

> g(embeddings

Projection layer

the cat sits on the]mat

Credit:

L Y l_'_l

context/history h target w;

https://www.tensorflow.org/tutorials/representation/word2vec

https://www.tensorflow.org/tutorials/representation/word2vec

PROJECT 2:
Text Sentiment Classification

What features are best?
What classifier is best?
What hyperparameters are best?

