Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Ensemble Methods:
Bagglng and Boosting

: q:«:"' = Q‘_ﬂ i ,
= = ‘ \ i, (1o
¥ "‘:! v e &2

¥

depthimage == body parts =% 3D joint propos

[y
=
o

Prof. Mike Hughes

Many slides attributable to:

Liping Liu and Roni Khardon (Tufts)
T. Q. Chen (UW),

James, Witten, Hastie, Tibshirani (ISL/ESL books) 2

https://www.cs.tufts.edu/comp/135/2019s/

Unit Objectives

Big idea: We can improve performance by
aggregating decisions from MANY predictors

* V1: Predictors are Independently Trained
 Using bootstrap subsample of examples: “Bagging”
» Using random subsets of features
« Exemplary method: Random Forest / ExtraTrees

» V2: Predictors are Sequentially Trained
» Each successive predictor “boosts” performance
» Exemplary method: XGBoost

Motivating Example

3 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

Motivating Example

3 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

0.784

Motivating Example

5 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

Motivating Example

5 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

0.8360...

Motivating Example

101 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

Motivating Example

101 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

>0.99...

Key Idea: Diversity

 Vary the training data

Bootstrap Sampling

Obs | X Y
3 53 |28 sl
» O
1 43 (24
3 53 |28
Obs 1X Y Obs | X Y
1 43 (24 &b | E %)
21 111 53 |28
53 |28 : _4'3 L
t
Original Data (Z) . .
Obs |[X |Y e
—’ a
21 |11
2.1 (1.1
1 43 (24

FIGURE 5.11. A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. Each bootstrap data set contains n obser-
vations, sampled with replacement from the original data set. Each bootstrap data
set 18 used to obtain an estimate of a.

Bootstrap Sampling in Python

def bootstrap_sample(x_NF, random_state=np.random):
N = x_NF.shape[2]
row_ids = random_state.choice(np.arange(N), size=N, replace=True)
return x_NF[row_ids].copy()

In [9]: x NF In [11]: bootstrap_sample(x_NF)
Out[9]: Out[11]:
array([[4.3, 2.4], array([[5.3, 2.8],

L3 Tulls | 5.3, 2.8,

[5.3, 2.8]]) [5.3, 2.8]1)
In [10]: bootstrap_sample(x_NF) In [12]: bootstrap_sample(x_NF)
Out[10]: Out[12]:
array([[2.1, 1.1], array([[5.3, 2.8],

| 2:%L. 1.1, 1 5.3, L.8),

L 2.1 1:111] | 4.3, 2.41))

Bootstrap Aggregation: BAgg-ing

* Draw B “replicas” of training set
 Use bootstrap sampling with replacement

« Make prediction by averaging

fb't,E; Z

Regression Example: 1 tree

/m\
XKZ/

Regression Example: 10 trees

10

0.0

\I\:}x RO
-
ju,f"'

-0.5

o AL
- Pr—

The solid black line is the ground-truth,
Red lines are predictions of single regression trees

Regression Average of 10 trees

0.5

The solid black line is the ground-truth,
The blue line is the prediction of the average of 10 regression trees

Binary Classification

=
L

0.8

0.6

04

0.2

0.0

0 g 0® 0
: DI]H ﬂd] 0070 ﬁ)ttb H[! e
9 0 0 FIIu 00 0 Hﬂﬁ - 1
nﬁ @0 Bo ”u[h 03 "
00", %]QD Pop ° AT 4 111“
Dﬂm@@ﬂ 00 g ¢ g {10
® 0H o, Op §P0 280 . 4 1
Dﬂg DDU 0 @ ‘11 1 1{' 1
00 0 ofh o8 q 1
g = i
ﬂ)@:“ 0 2 Ll Vi
0 11 1q1 1
¥, 0, 0 f‘:‘q 1117 (§ 11'1 1
g Y B 1141y 11
B.;.n 1*1114]‘!11 I
D@ 11 “:"‘I 1111 11311 T 11111111
B 411311 11’11|:1'1 A 1114 1'I}’1
1q4 In 14 11 5
| I I | I |
0.0 02 04 06 0.8 1.0

Decision Boundary: 1 tree

=
—
«Q

= .
@
o
.
o

-
o _

Decision boundary: 25 trees

o
e

Average over 25 trees

1.1

08

086

0.4

0.2

Variance of averages

 Given B independent observations
Z1yR2y ... 2B

 Each one has variance v

* Compute the mean of the B observations
B
~ 1
& = E b—E 1 Zb

« What is variance of this estimator?

Why Bagging Works:
Reduce Variance!

» Flexible learners applied to small datasets have
high variance w.r.t. the data distribution

« Small change in training set -> big change in
predictions on heldout set

» Bagging decreases heldout error by decreasing
the variance of predictions

» Bagging can be applied to any base
classifiers/regressors

Another Idea for Diversity

 Vary the features

Random Forest

Combine example diversity AND feature diversity

Fort=1to T (# trees):
Create an bootstrap sample from the training set.
Greedy train tree on random subsample of features

For each node within a maximum depth:
Randomly select m features from F features

Find the best split among m variables

Average the trees to get predictions for new data.

Extremely Randomized Trees

aka “ExtraTrees” in sklearn
Speed and feature diversity

Eind the . e

Try 1 random split at each of m variables,
then select the best split of these

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import make_blobs

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.tree import DecisionTree(lassifier

>>> X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
Ce random_state=0)

>>> Clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
. Wi random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean()

0.98...

>>> Clf = RandomForestClassifier(n_estimators=1@, max_depth=None,
. s min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean()

0.999...

>>> Clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
o min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean() > ©0.999

True

o
('). —
o
Credit: ISL textbook
R 1 R T VU= || U Single tree
o | k‘l
, l |‘ | ==
J ‘l l_A[iy ,Igrl L
i
S § -
& o I
~ [
Al
i '\'U }‘ :. A
L .dt{ M o =AU M
0 \‘N W P.\Jy |Ff v o "" |_LJ ""FJTU' Y TimA "“ f vk ! U
; —
—— Test: Bagging
—— Test: RandomForest
o —— 0OB: Bagging
- —— QOB: RandomForest
= T T T T T T T
0 50 100 150 200 250 300
Number of Trees

FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m = /p. The dashed line
indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is considerably lower.

Fbs
RestECG
ExAng

Slope
Chol

RestBP

:

Oldpeak
ChestPain

O
o

Thal

O—
N _|
o
&
o
Q
®

100
Variable Importance

FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance 18 computed using the mean decrease in Gini index, and expressed relative

to the marimum.

Random Forest in Industry

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon

Richard Moore

Mat Cook Toby Sharp Mark Finocchio
Alex Kipman Andrew Blake

Microsoft Research Cambridge & Xbox Incubation

depth image == body parts ==

front .

f "', Microsoft Kinect RGB-D camera

i

el §

e

3D joint proposals

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation
(I.x) (1.x)
tree 1 treeT

P
I Py(©) ’(c)hul

Figure 4. Randomized Decision Forests. A forest is an ensemble
of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the different paths that might be
taken by different trees for a particular input.

3.3. Randomized decision forests

Randomized decision trees and forests [5, 70, 2, ¥] have
proven fast and effective multi-class classifiers for many
tasks [0, 27, °6], and can be implemented cfficiently on the
GPU [74]. As illustrated in Fig. 4, a forest is an ensemble
of 7" decision trees, cach consisting of split and leaf nodes.
Each split node consists of a feature fy and a threshold 7.
To classify pixel x in image /, one starts at the root and re-
peatedly evaluates Eq. 1, branching left or right according
to the comparison to threshold 7. At the leaf node reached
in tree £, a learned distribution Py (¢, x) over body part la-
bels ¢ is stored. The distributions are averaged together for
all trees in the forest to give the final classification

T
1
Plell,x) = T ;P,(cll,x) g (2)
Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:
1. Randomly propose a set of splitting candidates ¢ =
(8, 7) (feature parameters # and thresholds 7).
2. Partition the set of examples @ = {(/,x)} into left
and right subsets by each ¢:
Ql(@) o {(I,X)lfg(I,X)<T} (3)
Q:(¢) = Q\Qi(e) (4)

Summary of Ensemble vi:
Independent predictors

» Average over independent base predictors
* Why it works: Reduce variance

 PRO

« Often better heldout performance than base model

« CON

 Training B separate models is expensive

Vocabulary: Residual

. Error or “residual”
Observation Y |

Prediction fj |

Ensemble Method v2:
Sequentially Predict Residual

* Model f1: Trained with (x,y) pairs
 Capture residual: r1 =y —f1

* Model f2: Trained with (x, r1) pairs
» Capture residual: r2 =r1 — {2

* Repeat!

Combine weak learners into a powerful committee

Adaboost (Adaptive Boosting)
Reweight misclassified examples

ESLtextbook Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights w; =1/N, i =1,2,... N.
2. For m =1 to M:

(a) Fit a classifier G,,(z) to the training data using weights w;.
(b) Compute
Zz\zl wil (Y # Gm(2:))
Zz\;l Ws |
(c) Compute a,,, = log((1 — err,,)/err,,).
(d) Set w; « w; - explam - I(y; # Gm(x:))], i=1,2,...,N.

T =

3. Output G(z) = sign [ZM a'me(:v)].

m=1

Boosting with depth-1 tree

(414 b
stump
© Single Stump

ESL textbook < |
o
o |
5 o
& »244‘N‘ode Tree N
8
. I
o
8 —
o |
o
| | | | |
0 100 200 300 400

Boosting Iterations

FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps,
as a function of the number of iterations. Also shown are the test error rate for
a single stump, and a 244-node classification tree.

Boosting for Regression Trees

ISL textbook Algorithm 8.2 Boosting for Regression Trees

1. Set f (z) =0 and r; = y; for all 7 in the training set.
2. Forb=1,2,...,B, repeat:

(a) Fit a tree fb with d splits (d+ 1 terminal nodes) to the training
data (X,r).

(b) Update f by adding in a shrunken version of the new tree:
f(z) « f(z) + Af*(2). (8.10)
(c¢) Update the residuals,
ri i — Mfo(z;). (8.11)

3. Output the boosted model,

B
f) =" Af(x). (8.12)
b=1

Boosted Tree: Optimization

The boosted tree model is a sum of such trees,

M

fm(z) = Z T'(z;6,,), (10.28)

m=1

induced in a forward stagewise manner (Algorithm 10.2). At each step in
the forward stagewise procedure one must solve

-~

2
©,, = arg min ; L (yi, fm—1(zi) + T(zi;0,)) (10.29)

region set and constants ©,, = { R, "!'jm-}i’m of the next tree.

Gradient Boosting Algorithm

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(z) = argmin,) .", L(y;. 7).
2. Form=1to M:
(a) Fori=1,2,..., N compute

Compute gradient
] . At each training example
f=fm-1

r B ()L(ljlf(ll))
df (z;)

(b) Fit a regression tree to the targets r;,, giving terminal regions Decide tree structure
Riviid =820 by fitting to gradients
lc) Forg=1;2..i:5 /., compute

; , Decide leaf values b
Yjm = argiin Z L (.Ui*fm—l(-rf) + ‘) . . o e y. .
Y sich progressively minimizing loss

(d) Update fo(z) = fn_1(z) + Z.I/,,.l vimI(Z € Rim). Add up trees to get the final
| model
3. Output f(z) = far(z).

What about regularization?

https://xgboost.readthedocs.io/

Minimization objective when adding tree t:

[

obj” = Z (i, 57) +), Q)
i=1

1;:1

— Z I(yi, f[_l' + fi(x;)) + Q(f;) + constant

i=1 : N
Loss function Regularization

(limit complexity of tree t)

https://xgboost.readthedocs.io/

Regularization

We can penalize

« Number of nodes in tree
* Depth of tree

 Scalar value predicted in each region (L2 penalty)

my rate over love songs

|« e Splitting Positions

_* ’ hmm...

t .~ ,— TheHeightin each segment

o aam an 2 -

\ i Credit: T. Chen
'\ ? timeline https://homes.cs.washington.edu/~
When | met my girlfriend! tqchen/pdf/BoostedTree.pdf

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Example Regularization Term

» Define complexity as (this is not the only possible definition)

QAfs) =T+ 3IA Y, w?

Number of leaves L2 norm of leaf scores

P e S ! Q=73+ iA4+0.01+1)
Leaf 1 Leaf 2 Leat 3
wi=+2 w2=0.1 w3=-1 Credit: T. Chen

https://homes.cs.washington.edu/~

tqchen/pdf/BoostedTree.pdf

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

To Improve Gradient Boosting

Can extend gradient boosting with

 2nd order gradient information (Newton step)
 Penalties on tree complexity

» Very smart practical implementation

Result: Extreme Gradient Boosting
aka XGBoost (T. Chen & C. Guestrin)

XGBoost:
Extreme Gradient Boosting

« Kaggle competitions in 2015

29 total winning solutions to challenges published
* 17 / 29 (58%) used XGBoost

* 11 / 29 (37%) used deep neural networks

XGBoost

from xgboost import XGBClassifier
clf = XGBClassifier()

n_estimators = 100 (default)

max_depth = 3 (default)
clf.fit(x_train,y_train)
clf.predict(x_test)

More details (beyond this class)

ESL textbook, Section 10.10

Good slide deck by T. Q. Chen (first author of
XGBoost):

* https://homes.cs.washington.edu/~tqchen/pdf
/BoostedTree.pdf

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Summary of Boosting

PRO

» Like all tree methods, invariant to scaling of inputs (no
need for careful feature normalization)

* Can be scalable

CON
» Greedy Sequential fit may not be globally optimal

IN PRACTICE
e XGBoost

* Very popular in many benchmark competitions and industrial
applications

Unit Objectives

Big idea: We can improve performance by
aggregating decisions from MANY predictors

* V1: Predictors are Independently Trained
 Using bootstrap subsample of examples: “Bagging”
» Using random subsets of features
« Exemplary method: Random Forest / ExtraTrees

» V2: Predictors are Sequentially Trained
» Each successive predictor “boosts” performance
» Exemplary method: XGBoost

