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Unit Objectives
Big idea: We can improve performance by 
aggregating decisions from MANY predictors

• V1: Predictors are Independently Trained
• Using bootstrap subsample of examples: “Bagging”
• Using random subsets of features
• Exemplary method: Random Forest / ExtraTrees

• V2: Predictors are Sequentially Trained
• Each successive predictor “boosts” performance
• Exemplary method: XGBoost
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Motivating Example

3 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?
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Motivating Example

3 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?
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0.784



Motivating Example

5 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?
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Motivating Example

5 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?
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0.8369…



Motivating Example

101 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?
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Motivating Example

101 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?
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>0.99…
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Key Idea: Diversity

• Vary the training data



Bootstrap Sampling
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Bootstrap Sampling in Python
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Bootstrap Aggregation: BAgg-ing

• Draw B “replicas” of training set
• Use bootstrap sampling with replacement

• Make prediction by averaging
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Regression Example: 1 tree

Images are taken from Adele Cutler’s slides 



Regression Example: 10 trees

The solid black line is the ground-truth, 
Red lines are predictions of single regression trees

Images are taken from Adele Cutler’s slides 



Regression Average of 10 trees

The solid black line is the ground-truth, 
The blue line is the prediction of the average of 10 regression trees

Images are taken from Adele Cutler’s slides 



Binary Classification

Images are taken from Adele Cutler’s slides 



Decision Boundary: 1 tree

Images are taken from Adele Cutler’s slides 



Decision boundary: 25 trees 

Images are taken from Adele Cutler’s slides 



Average over 25 trees

Images are taken from Adele Cutler’s slides 



Variance of averages
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• Given B independent observations

• Each one has variance v

• Compute the mean of the B observations

• What is variance of this estimator?



Why Bagging Works:
Reduce Variance!
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• Flexible learners applied to small datasets have 
high variance w.r.t. the data distribution
• Small change in training set -> big change in 

predictions on heldout set

• Bagging decreases heldout error by decreasing 
the variance of predictions

• Bagging can be applied to any base 
classifiers/regressors



Another Idea for Diversity

• Vary the features
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Random Forest
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Combine example diversity AND feature diversity

For t = 1 to T (# trees): 
Create an bootstrap sample from the training set.
Greedy train tree on random subsample of features

For each node within a maximum depth: 
Randomly select m features from F features
Find the best split among m variables

Average the trees to get predictions for new data. 



Extremely Randomized Trees
aka “ExtraTrees” in sklearn
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Speed and feature diversity

For t = 1 to T (# trees): 
Create an bootstrap sample from the training set.
Greedy train tree on random subsample of features

For each node within a maximum depth: 
Randomly select m features from F features
Find the best split among m variables
Try 1 random split at each of m variables,

then select the best split of these
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Single tree

Credit: ISL textbook
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Random Forest in Industry
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Microsoft Kinect RGB-D camera
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Summary of Ensemble v1:
Independent predictors

• Average over independent base predictors

• Why it works: Reduce variance

• PRO
• Often better heldout performance than base model

• CON
• Training B separate models is expensive
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Vocabulary: Residual
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Ensemble Method v2:
Sequentially Predict Residual

• Model f1: Trained with (x,y) pairs
• Capture residual: r1 = y – f1

• Model f2: Trained with (x, r1) pairs
• Capture residual: r2 = r1 – f2

• Repeat!

Combine weak learners into a powerful committee
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Adaboost (Adaptive Boosting)
Reweight misclassified examples
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ESL textbook



Boosting with depth-1 tree 
“stump”

35Mike Hughes - Tufts COMP 135 - Spring 2019

ESL textbook



Boosting for Regression Trees
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ISL textbook



Boosted Tree: Optimization
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Gradient Boosting Algorithm
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Decide tree structure 
by fitting to gradients

Decide leaf values by 
progressively minimizing loss

Add up trees to get the final 
model

Compute gradient
At each training example



What about regularization?
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Minimization objective when adding tree t:

Loss function Regularization
(limit complexity of tree t)

https://xgboost.readthedocs.io/

https://xgboost.readthedocs.io/


Regularization
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We can penalize
• Number of nodes in tree
• Depth of tree
• Scalar value predicted in each region (L2 penalty)

Credit: T. Chen
https://homes.cs.washington.edu/~
tqchen/pdf/BoostedTree.pdf

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf


Example Regularization Term
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Credit: T. Chen
https://homes.cs.washington.edu/~
tqchen/pdf/BoostedTree.pdf

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf


To Improve Gradient Boosting

Can extend gradient boosting with
• 2nd order gradient information (Newton step)
• Penalties on tree complexity
• Very smart practical implementation

Result: Extreme Gradient Boosting
aka XGBoost (T. Chen & C. Guestrin)
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XGBoost:
Extreme Gradient Boosting

• Kaggle competitions in 2015
• 29 total winning solutions to challenges published
• 17 / 29 (58%) used XGBoost
• 11 / 29 (37%) used deep neural networks
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More details (beyond this class)

ESL textbook, Section 10.10

Good slide deck by T. Q. Chen (first author of 
XGBoost):
• https://homes.cs.washington.edu/~tqchen/pdf

/BoostedTree.pdf
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https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf


Summary of Boosting
PRO
• Like all tree methods, invariant to scaling of inputs (no 

need for careful feature normalization)
• Can be scalable

CON
• Greedy Sequential fit may not be globally optimal

IN PRACTICE
• XGBoost

• Very popular in many benchmark competitions and industrial 
applications
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Unit Objectives
Big idea: We can improve performance by 
aggregating decisions from MANY predictors

• V1: Predictors are Independently Trained
• Using bootstrap subsample of examples: “Bagging”
• Using random subsets of features
• Exemplary method: Random Forest / ExtraTrees

• V2: Predictors are Sequentially Trained
• Each successive predictor “boosts” performance
• Exemplary method: XGBoost

46Mike Hughes - Tufts COMP 135 - Spring 2019


