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Support Vector Machines
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- logistic loss
- hinge loss
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Many ideas/slides attributable to:
Dan Sheldon (U.Mass.)
James, Witten, Hastie, Tibshirani (ISL/ESL books)
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SVM Unit Objectives

Big ideas: Support Vector Machine
 Why maximize margin?

* What is a support vector?

* What is hinge loss?

» Advantages over logistic regression
* Less sensitive to outliers
« Advantages from sparsity in when using kernels

» Disadvantages

 Not probabilistic
* Less elegant to do multi-class



What will we learn?

Supervised T e §~:
Learning . Data, Label Pairs "
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Recall: Kernelized Regression

Training Data
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Linear Regression

clf = sklearn.linear model.LinearRegression()
clf.fit(x _train, y train)
plot_model(x test, clf)
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Kernel Function

k(xi, ) = o(2:)" d(x;)
Interpret: similarity function for x_iand x_

Properties:
Input: any two vectors
Output: scalar real
larger values mean more similar
symmetric



Common Kernels

» Polynomial K(a,b) = +Za,b, J

* Radial Basis Functions il

Bla, §) = axpl—{a— 52 /269 ‘ /\ |
- Saturating, sigmoid-like: \ 3
K(a,b) = t.anh(caTb + h) » /. o\ *

» Many for special data types:
— String similarity for text, genetics




Kernel Matrices

« K_train : N x N symmetric matrix

]C(lel, 5131)
k(wg, 213‘1)

- k(zn,21)

k(xq,22)...

k(xo,x2) ...

k(xn,x2)...

k(x1,zN)
k(xo,zN)

]C(wN, $N)

« K test: T x N matrix for test feature




Linear Kernel Regression

clf = sklearn.linear model.LinearRegression()
clf.fit(K train, y train)
plot model (K _test, clf)

8 - —— Test
® & ® Train
6 @ e ®
@
i :00 5 :’
o o
2 - :3"": . ’ ™ .iﬁ'
M
'.. s ® = L
0 - \. L
@ Qq' .
-2 } B o = ..
o @ &
&
-4 1 &




Radial basis kernel
aka Gaussian
aka Squared Exponential
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Compare: Linear Regression

Prediction: Linear transform of G-dim features
i(x;,0) = 6 ¢( 9 -
Y <Ly, 5137,
Training° Solve G-dim optimization problem
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Kernelized Linear Regression

 Prediction:

N
?3(55737 v, {CUR}T]Y:l) — Z O‘nk(w’m ZEZ)
— X n=1

* Training: Solve N-dim optimization problem
min z 3,0, X))

Can do all needed operations with only access to kernel
(no feature vectors are created in memory)



Math on board

 Goal: Kernelized linear prediction reweights
each training example



Can kernelize any linear model

Regression: Prediction
N
?)('x’i? Y, {%}5:1) — Z ank(ajna ZE’L)
n=1

Logistic Regression: Prediction

p(Yi = 1|zi) = o(y(zi, o, X))



Training : Reg. Vs. Logistic Reg.
mm Z J(zn, o, X))

min Zlog_lOSS(yn, U(?)@m QO X)))



Downsides of LR

Log loss means any example misclassified pays a
steep price, pretty sensitive to outliers
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Feature 2, X,

Stepping back

Which do we prefer? Why?
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Decision boundary

Feature 1, X,

Feature 2, X,

Feature 1, X,

Decision boundary



Idea: Define Regions
Separated by Wide Margin

Region -1

We could define such a function:
f(x)=w*x +Db

f(x) > +1 inregion +1
f(x) < —1 in region —1

Passes through zero in center. ..



w is perpendicular to boundary

f(x)=0 f(x)= +1

Region +1

f(x) =--1..-1

Region -1



Examples that define the margin
are called support vectors

Nearest positive

example
Region +1 L4

Nearest negative

example
X _

Region -1



Observation:
Non-support training examples
do not influence margin at all

Region +1 Could perturb
these examples
without
impacting
boundary

fix=0 )=+

Region -1



How wide i1s the margin?

XY |

M = margin width




Small margin

(1 ifwx+5=0
YZ1-1 ifwx+b<0

* y positive

° y negative

Margin: distance
to the boundary




Large margin
B {+1 ifwx+b=0
* v positive Y= —1 ifwx+b<0

° y negative

Margin: distance
to the boundary




How wide i1s the margin?

Distance from nearest positive example to
nearest negative example along vector w:

(L —z)w  (vy —oz ) w

Wl Vert el

The scalar projection of aon bisthe magnitude of the vector projection of aonb.

.— a-b
lprojpal = ——

I



How wide i1s the margin?

Distance from nearest positive example to
nearest negative example along vector w:

(x4 —x_)tw 2

M(w) = —
() Tl I

By construction, we assume
wlz, +b=+1
whz_ +b=—1

wl (zp —x_) =2




SVM Training Problem
Version 1: Hard margin

2

wib [|wllz

, wlz, +b> +1 it y, =1
subject to - _ .
Foreach n=1,2,...N w :L‘,n —|— b S — 1 ]_f yn — O

Requires all training examples to be correctly classified

This is a constrained quadratic optimization problem. There are standard
optimization methods as well methods specially designed for SVM.




SVM Training Problem
Version 1: Hard margin

. 1 Minimizing this equivalent to maximizing
IMIn — | | w | | 2 the margin width in feature space
w,b
T g ; __
w'x, +b>+1 it y, =1

subject to
Ta, +b< = if
Foreach n=1,2,...N w 33n 1 1 yn

|
-

Requires all training examples to be correctly classified

This is a constrained quadratic optimization problem. There are standard
optimization methods as well methods specially designed for SVM.




Soft margin:
Allow some misclassifications
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Hard vs. soft constraints

HARD: All positive examples to satisfy

wlz, +b>+1

SOFT: Want each positive examples to satisfy
T

with slack as small as possible
(minimize absolute value)




Hinge loss for positive example

Assumes current example
has positive label
y = +1

| e |
incorrectly classified correctly classified
distance from boundary

whx, +b



SVM Training Problem
Version 2: Soft margin

N
. 1 T . T
min —w" w+ C Z hinge loss(y,, w” x,, + b)
w,b 2
n=1
Tradeoff parameter C
controls model complexity
Smaller C: Simpler model, encourage
large margin even if we make lots of
\ mistakes
_— 0 —

Bigger C: Avoid mistakes

incorrectly classified : correctly classified
distance from boundary



SVM vs LR: Compare training

N
1
Iglg §wTw + C nz_:l hinge_loss(yn, w! =, + b)

N
1
min inw +C Z log_loss(y,, o(w! z,, + b))

w,b
n=1

Both require tuning complexity
hyperparameter C to avoid overtfitting



Loss functions:
SVM vs Logistic Regr.

w
3 -
- ZEero one
- |ogistic loss
—— hinge loss
2
0

real-valued score



SVMs: Prediction
J(z;) = w' x; + b

Make binary prediction via hard threshold

{1 if §(x;) >0

0 otherwise



SVMs and Kernels: Prediction

N
§(x;) = Z K (Tr, ;)
n=1

Make binary prediction via hard threshold
1 if g(z;) >0

0 otherwise

Efficient training algorithms using modern quadratic programming
solve the dual optimization problem of SVM soft margin problem



Support vectors are often
small fraction of all examples

Nearest positive

example
Region +1 L4

f(x)=0 f(x)= +1
Nearest negative

example
X _

f(x) =‘.__.'-1

Region -1



Support vectors defined by
non-zero alpha in kernel view

Data points / with non-zero weight o
» Points with minimum margin (on optimized boundary)

» Points which violate margin constraint, but are still correctly classified
» Points which are misclassified

For all other training data. features have no /mpacr on learned weight vector

f(x)=0




SVM + Squared Exponential
Kernel
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Support vectors (green) for data separable by radial basis function
kernels, and non-linear margin boundaries




Loss
Sensitive to

outliers
Probabilistic?

Kernelizable?

Multi-class?

hinge
less

no

Yes, with speed
benefits from
sparsity

Only via a separate

one-vs-all for each
class

cross entropy
(log loss)
more

yes

Yes

Easy, use softmax



Activity
« KernelRegressionDemo.ipynb

* Scroll down to SVM vs logistic regression
 Can you visualize behavior with different C?
 Try different kernels?

« Examine alpha vector?



