Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Support Vector Machines

Many ideas/slides attributable to: Dan Sheldon (U.Mass.) James, Witten, Hastie, Tibshirani (ISL/ESL books)

SVM Unit Objectives

Big ideas: Support Vector Machine

- Why maximize margin?
- What is a support vector?
- What is hinge loss?
- Advantages over logistic regression
 - Less sensitive to outliers
 - Advantages from sparsity in when using kernels
- Disadvantages
 - Not probabilistic
 - Less elegant to do multi-class

Recall: Kernelized Regression

Linear Regression

clf = sklearn.linear_model.LinearRegression()
clf.fit(x_train, y_train)
plot_model(x_test, clf)

Mike Hughes - Tufts COMP 135 - Spring 2019

Kernel Function

 $k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$

Interpret: similarity function for x_i and x_j

Properties: Input: any two vectors Output: scalar real larger values mean more similar symmetric

Common Kernels

- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$
- Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

Saturating, sigmoid-like:

$$K(a,b) = \tanh(ca^T b + h)$$

- Many for special data types:
 - String similarity for text, genetics

Kernel Matrices

• K_train : N x N symmetric matrix

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) \dots k(x_1, x_N) \\ k(x_2, x_1) & k(x_2, x_2) \dots k(x_2, x_N) \\ \vdots \\ k(x_N, x_1) & k(x_N, x_2) \dots k(x_N, x_N) \end{bmatrix}$$

K_test : T x N matrix for test feature

Linear Kernel Regression

clf = sklearn.linear_model.LinearRegression()
clf.fit(K_train, y_train)
plot_model(K_test, clf)

Mike Hughes - Tufts COMP 135 - Spring 2019

Radial basis kernel aka Gaussian aka Squared Exponential

Mike Hughes - Tufts COMP 135 - Spring 2019

Compare: Linear Regression

Prediction: Linear transform of G-dim features $\hat{y}(x_i, \theta) = \theta^T \phi(x_i) = \sum_{g=1}^G \theta_g \cdot \phi(x_i)_g$

Training: Solve G-dim optimization problem

$$\min_{\theta} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2 + \frac{\text{L2 penalty}}{\text{(optional)}}$$

Kernelized Linear Regression

• Prediction:

$$\hat{y}(x_i, \alpha, \{x_n\}_{n=1}^N) = \sum_{n=1}^N \alpha_n k(x_n, x_i) = X$$

T T

• **Training:** Solve N-dim optimization problem

$$\min_{\alpha} \sum_{n=1} \left(y_n - \hat{y}(x_n, \alpha, X) \right)^2$$

Can do all needed operations with only access to kernel (no feature vectors are created in memory)

Math on board

• Goal: Kernelized linear prediction reweights each training example

Can kernelize any linear model

Regression: Prediction $\hat{y}(x_i, \alpha, \{x_n\}_{n=1}^N) = \sum_{n=1}^N \alpha_n k(x_n, x_i)$

Logistic Regression: Prediction

$$p(Y_i = 1 | x_i) = \sigma(\hat{y}(x_i, \alpha, X))$$

Training : Reg. Vs. Logistic Reg.

Downsides of LR

Log loss means any example misclassified pays a steep price, pretty sensitive to outliers

Stepping back

Which do we prefer? Why?

Idea: Define Regions Separated by Wide Margin

We could define such a function:

 $f(x) = w^*x' + b$

f(x) > +1 in region +1 f(x) < -1 in region -1

Passes through zero in center...

w is <u>perpendicular</u> to boundary

Examples that define the margin are called **support vectors**

Observation: Non-support training examples do not influence margin **at all**

How wide is the margin?

Small margin

- y positive
- ° y negative

How wide is the margin?

Distance from nearest positive example to nearest negative example along vector w:

$$M(w) = \frac{(x_{+} - x_{-})^{T} w}{||w||_{2}} = \frac{(x_{+} - x_{-})^{T} w}{\sqrt{w_{1}^{2} + \dots w_{F}^{2}}}$$

The scalar projection of \overline{a} on \overline{b} is the <u>magnitude</u> of the vector projection of \overline{a} on \overline{b} .

$$|proj_{\overline{b}}\overline{a}| = \frac{\overline{a} \cdot \overline{b}}{|\overline{b}|}$$

How wide is the margin?

Distance from nearest positive example to nearest negative example along vector w:

$$M(w) = \frac{(x_{+} - x_{-})^{T} w}{||w||_{2}} \qquad = \frac{2}{||w||_{2}}$$

By construction, we assume

By construction, we assume $w^T x_+ + b = +1$ $w^T x_- + b = -1$ $w^T (x_+ - x_-) = 2$

$$\begin{array}{l} \text{SVM Training Problem} \\ \text{Version 1: Hard margin} \\ \\ \max_{w,b} \frac{2}{||w||_2} \\ \\ \text{subject to} \\ \\ \text{For each n = 1, 2, \dots N} \end{array} \begin{cases} w^T x_n + b \geq +1 & \text{if } y_n = 1 \\ w^T x_n + b \leq -1 & \text{if } y_n = 0 \end{cases}$$

Requires all training examples to be correctly classified

This is a constrained quadratic optimization problem. There are standard optimization methods as well methods specially designed for SVM.

SVM Training Problem Version 1: Hard margin

$$\min_{w,b} \frac{1}{2} ||w||_2$$

Minimizing this equivalent to maximizing the margin width in feature space

subject to
For each n = 1, 2, ..., N
$$\begin{cases}
w^T x_n + b \ge +1 & \text{if } y_n = 1 \\
w^T x_n + b \le -1 & \text{if } y_n = 0
\end{cases}$$

Requires all training examples to be correctly classified

This is a constrained quadratic optimization problem. There are standard optimization methods as well methods specially designed for SVM.

Soft margin: Allow some misclassifications

Hard vs. soft constraints

HARD: All positive examples to satisfy $w^T x_n + b \ge +1$

SOFT: Want each positive examples to satisfy $w^T x_n + b \ge +1 - \xi_n$

with slack as small as possible (minimize **absolute value**)

Hinge loss for positive example

Mike Hughes - Tufts COMP 135 - Spring 2019

SVM Training Problem Version 2: Soft margin

SVM vs LR: Compare training

$$\min_{w,b} \quad \frac{1}{2}w^T w + C \sum_{n=1}^{N} \text{hinge}_{-loss}(y_n, w^T x_n + b)$$

$$\min_{w,b} \quad \frac{1}{2}w^T w + C \sum_{n=1}^{N} \log_{-} \log(y_n, \sigma(w^T x_n + b))$$

Both require tuning complexity hyperparameter C to avoid overfitting

Mike Hughes - Tufts COMP 135 - Spring 2019

SVMs: Prediction

$$\hat{y}(x_i) = w^T x_i + b$$

Make binary prediction via hard threshold $\begin{cases}
1 & \text{if } \hat{y}(x_i) \ge 0 \\
0 & \text{otherwise}
\end{cases}$

SVMs and Kernels: Prediction

$$\hat{y}(x_i) = \sum_{n=1}^{N} \alpha_n k(x_n, x_i)$$

Make binary prediction via hard threshold $\begin{cases}
1 & \text{if } \hat{y}(x_i) \ge 0 \\
0 & \text{otherwise}
\end{cases}$

Efficient training algorithms using modern quadratic programming solve the dual optimization problem of SVM soft margin problem

Support vectors are often **small** fraction of all examples

Support vectors defined by **non-zero alpha** in kernel view

Data points *i* with non-zero weight α_i :

- Points with minimum margin (on optimized boundary)
- > Points which violate margin constraint, but are still correctly classified
- Points which are misclassified

For all other training data, features have no impact on learned weight vector

SVM + Squared Exponential Kernel

Support vectors (green) for data separable by radial basis function kernels, and non-linear margin boundaries

	SVM	Logistic Regr
Loss	hinge	cross entropy (log loss)
Sensitive to outliers	less	more
Probabilistic?	no	yes
Kernelizable?	Yes, with speed benefits from sparsity	Yes
Multi-class?	Only via a separate one-vs-all for each class	Easy, use softmax

Activity

- KernelRegressionDemo.ipynb
- Scroll down to SVM vs logistic regression
 - Can you visualize behavior with different C?
 - Try different kernels?
 - Examine alpha vector?