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SVM Unit Objectives
Big ideas: Support Vector Machine
• Why maximize margin?
• What is a support vector?
• What is hinge loss?

• Advantages over logistic regression
• Less sensitive to outliers
• Advantages from sparsity in when using kernels

• Disadvantages
• Not probabilistic
• Less elegant to do multi-class

3Mike Hughes - Tufts COMP 135 - Spring 2019



What will we learn?
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Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning

Data, Label Pairs
Performance
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data 
x
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{xn, yn}Nn=1
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Prediction

Evaluation



Recall: Kernelized Regression
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Linear Regression
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Kernel Function
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k(xi, xj) = �(xi)
T
�(xj)

Interpret: similarity function for x_i and x_j

Properties:
Input: any two vectors
Output: scalar real
larger values mean more similar
symmetric



Common Kernels
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• K_train : N x N symmetric matrix

• K_test : T x N matrix for test feature
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Kernel Matrices

K =

2

6664

k(x1, x1) k(x1, x2) . . . k(x1, xN )
k(x2, x1) k(x2, x2) . . . k(x2, xN )

...
k(xN , x1) k(xN , x2) . . . k(xN , xN )

3

7775



Linear Kernel Regression
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Radial basis kernel
aka Gaussian
aka Squared Exponential
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Compare: Linear Regression

Training: Solve G-dim optimization problem

Prediction: Linear transform of G-dim features

+ L2 penalty
(optional)

ŷ(xi, ✓) = ✓

T
�(xi) =

GX

g=1

✓g · �(xi)g

min
✓

NX

n=1

(yn � ŷ(xn, ✓))
2



Kernelized Linear Regression
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• Prediction:

• Training: Solve N-dim optimization problem 

ŷ(xi,↵, {xn}Nn=1) =
NX

n=1

↵nk(xn, xi)

min
↵

NX

n=1

(yn � ŷ(xn,↵, X))2

= X

Can do all needed operations with only access to kernel
(no feature vectors are created in memory)



Math on board

• Goal: Kernelized linear prediction reweights 
each training example
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Can kernelize any linear model
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ŷ(xi,↵, {xn}Nn=1) =
NX

n=1

↵nk(xn, xi)

Regression: Prediction 

Logistic Regression: Prediction 

p(Yi = 1|xi) = �(ŷ(xi,↵, X))



Training : Reg. Vs. Logistic Reg.
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min

↵

NX

n=1

(yn � ŷ(xn,↵, X))

2

min

↵

NX

n=1

log loss(yn,�(ŷ(xn,↵, X)))



Downsides of LR
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Log loss means any example misclassified pays a 
steep price, pretty sensitive to outliers



Stepping back

Which do we prefer? Why?
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Idea: Define Regions
Separated by Wide Margin
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w is perpendicular to boundary
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Examples that define the margin 
are called support vectors
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Nearest negative 
example

Nearest positive 
example



Observation: 
Non-support training examples 
do not influence margin at all
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Could perturb
these examples
without 
impacting
boundary



How wide is the margin?
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Small margin
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y positive
y negative

! = #+1 &'w x + b ≥ 0
−1 &'w x + b < 0

w x + b<0

w x + b>0

Margin: distance 
to the boundary



Large margin
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! = #+1 &'w x + b ≥ 0
−1 &'w x + b < 0

w x + b<0

w x + b>0

Margin: distance 
to the boundary

y positive
y negative



How wide is the margin?
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Distance from nearest positive example to 
nearest negative example along vector w:



How wide is the margin?
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Distance from nearest positive example to 
nearest negative example along vector w:

By construction, we assume



SVM Training Problem
Version 1: Hard margin
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Requires all training examples to be correctly classified

This is a constrained quadratic optimization problem. There are standard 
optimization methods as well methods specially designed for SVM.

For each  n = 1, 2, …. N



SVM Training Problem
Version 1: Hard margin
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Requires all training examples to be correctly classified

This is a constrained quadratic optimization problem. There are standard 
optimization methods as well methods specially designed for SVM.

Minimizing this equivalent to maximizing 
the margin width in feature space

For each  n = 1, 2, …. N



Soft margin:
Allow some misclassifications
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Slack at example i

Distance on wrong side
of the margin



Hard vs. soft constraints
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HARD: All positive examples to satisfy

SOFT: Want each positive examples to satisfy

with slack as small as possible
(minimize absolute value)



Hinge loss for positive example
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Assumes current example
has positive label

y = +1

+10
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SVM Training Problem
Version 2: Soft margin

Tradeoff parameter C
controls model complexity

Smaller C: Simpler model, encourage 
large margin even if we make lots of 
mistakes

Bigger C: Avoid mistakes
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SVM vs LR: Compare training

Both require tuning complexity 
hyperparameter C to avoid overfitting
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Loss functions:
SVM vs Logistic Regr.



SVMs: Prediction
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Make binary prediction via hard threshold



SVMs and Kernels: Prediction
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Make binary prediction via hard threshold

Efficient training algorithms using modern quadratic programming
solve the dual optimization problem of SVM soft margin problem



Support vectors are often 
small fraction of all examples
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Nearest negative 
example

Nearest positive 
example



Support vectors defined by 
non-zero alpha in kernel view
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SVM + Squared Exponential 
Kernel
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SVM Logistic Regr

Loss hinge cross entropy
(log loss)

Sensitive to 
outliers

less more

Probabilistic? no yes

Kernelizable? Yes, with speed 
benefits from 
sparsity

Yes

Multi-class? Only via a separate 
one-vs-all for each 
class

Easy, use softmax



Activity

• KernelRegressionDemo.ipynb

• Scroll down to SVM vs logistic regression
• Can you visualize behavior with different C?
• Try different kernels?
• Examine alpha vector?
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