Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Recommendation Systems

NETFLIX

Many ideas/slides attributable to: Liping Liu (Tufts), Emily Fox (UW) Matt Gormley (CMU)

Prof. Mike Hughes

2

Recommendation Task: Which users will like which items?

Need recommendation everywhere

Utility matrix

- The "value" or "utility" of items to users
 - Only known when ratings happen
 - In practice, very sparse, many entries unknown

	-	ő		
	2		4	1
R	5		3	
10 - 20	2	4	5	

Rec Sys Unit Objectives

- Explain Recommendation Task
 - Predict which users will like which items
- Explain two major types of recommendation
 - Content-based (have features for items/users)
 - Collaborative filtering (only have scores for item+user pairs)
 - Detailed Approach: Matrix Factorization + SGD
- Evaluation:
 - Precision/recall for binary recs

Task: Recommendation

Supervised Learning Content filtering

Unsupervised Learning

Collaborative filtering

Reinforcement Learning

-	ő		
2	?	4	1
5		3	
2	4	5	

Content-based recommendation

Content-based

Key aspect: Have common features for each item

FEATURE	VALUE			
is_round	1			
is_juicy	1			
average_price	\$1.99/lb			

	-	ő		
	2	?	4	1
R	5		3	
	2	4	5	

Content-Based Recommendation

• Reduce per-user prediction to supervised prediction problem

What features are necessary? What are pitfalls?

Fig. Credit: Emily Fox (UW)

Possible Per-Item Features

- Movie
 - Set of actors, director, genre, year
- Document
 - Bag of words, author, genre, citations
- Product
 - Tags, reviews

Content-Based Recommender

Pros:

- Personalized: Considers user info & purchase history
- Features can capture context: Time of the day, what I just saw,...
- Even handles limited user history: Age of user, ...

Cons:

- Features may not be available
- Often doesn't perform as well as collaborative filtering methods (next)

Fig. Credit: Emily Fox (UW)

Collaborative filtering

External Slides

- Matt Gormley at CMU
- <u>https://www.cs.cmu.edu/~mgormley/courses/</u> 10601-s17/slides/lecture25-mf.pdf
- We'll use page 4 34
 - Start: "Recommender Systems" slide
 - Stop at: comparison of optimization algorithms

Matrix Factorization (MF)

- User *i* represented by vector $\boldsymbol{u}_i \in R^k$
- Item *j* represented by vector $v_j \in \mathbb{R}^k$
- Inner product $\boldsymbol{u}_i^{\mathsf{T}} \boldsymbol{v}_j$ approximates the utility M_{ij}
- Intuition:
 - Two items with similar vectors get similar utility scores from the same user;
 - Two users with similar vectors give similar utility scores to the same item

Training an MF model

- Variables to optimize
 - $\mathbf{U} = (\mathbf{u}_i: i = 1, ..., N), \mathbf{V} = (\mathbf{v}_i: j = 1, ..., M)$
- Training objective

$$\min_{\mathbf{U},\mathbf{V}}\sum_{ij}\left(M_{ij}-\boldsymbol{u}_{i}^{\mathsf{T}}\boldsymbol{v}_{j}\right)^{2}+\lambda\sum_{i}\|\boldsymbol{u}_{i}\|_{2}^{2}+\lambda\sum_{j}\|\boldsymbol{v}_{j}\|_{2}^{2}$$

- How to optimize?
 - Stochastic gradient descent, visit each user-item entry at random!
- Key practical aspects
 - Regularization terms to prevent overfitting

Include intercept/bias terms!

- Per-user scalar *s*_{*i*}
- Per-item scalar t_i

$$\min_{\mathbf{U},\mathbf{V}}\sum_{ij}\left(M_{ij}-\boldsymbol{u}_{i}^{\mathsf{T}}\boldsymbol{v}_{j}-s_{i}-t_{j}\right)^{2}+\lambda\sum_{i}\left\|\boldsymbol{u}_{i}\right\|_{2}^{2}+\lambda\sum_{j}\left\|\boldsymbol{v}_{j}\right\|_{2}^{2}$$

Why include these?

Include intercept/bias terms!

- Per-user scalar s_i
- Per-item scalar t_i

$$\min_{\mathbf{U},\mathbf{V}}\sum_{ij}\left(M_{ij}-\boldsymbol{u}_{i}^{\mathsf{T}}\boldsymbol{v}_{j}-s_{i}-t_{j}\right)^{2}+\lambda\sum_{i}\left\|\boldsymbol{u}_{i}\right\|_{2}^{2}+\lambda\sum_{j}\left\|\boldsymbol{v}_{j}\right\|_{2}^{2}$$

Why include these? **Improve accuracy** Some items just more popular Some users just more positive

Summary of Methods

Task: Recommendation

Supervised Learning

Content-based filtering

Unsupervised Learning

Collaborative filtering

Reinforcement Learning

-	ő		
2	?	4	1
5		3	
2	4	5	

Example: Performance Supervised Learning Content-based filtering Track Trac

Unsupervised Learning

Reinforcement Learning

Recall: Unsupervised Method

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Example: Matrix Factorization

Evaluation

Evaluation

Assumptions

- For given user, we can rate each item with score
- We care most about our top-score predictions
- Setup:
 - Algorithm rates each item with score
 - Sort items from high to low score
 - Have "true" relevant/not usage labels (unused by algo.)

Item ranking	1	2	3	4	5	6	7	8
Actual usage	1	0	1	0	0	0	1	1

How many liked items were recommended?

How many recommended items were liked?

External Slides

- Emily Fox's slides
- <u>https://courses.cs.washington.edu/courses/cse</u> <u>416/18sp/slides/L13_matrix-</u> <u>factorization.pdf#page=19</u>
- Start: Slide 19 (world of all baby products)
- Stop: End of that section

Precision-Recall Curve

recall (= TPR)

Precision @ k

- Assume only top k results are predicted positive
 - E.g. Netflix can only show you ~8 results on screen at a time, we want most of these to be relevant
- Example:

Item ranking	1	2	3	4	5	6	7	8
Actual usage	1	0	1	0	0	0	1	1

- Prec @ 1:100%
- Prec @ 2: 50%
- Prec @ 8: 50%

Cold Start Issue

- New user entering the system
 - Hard for both content-based and matrix factors
 - Matching similar users
 - Trial-and-error
- New item entering the system
 - Easy with per-user content-based recommendation
 - IF easy to get the item's feature vector
 - Hard with matrix factorization
 - Trial-and-error

Practical Issues in Real Systems

- Recommendation system and users form a loopy system
 - RS changes user's behavior
 - User generate data for RS
- User groups becoming more homogeneous
 - Youtube recommendation of politic videos: recommend videos from the same camp

Rec Sys Unit Objectives

- Explain Recommendation Task
 - Predict which users will like which items
- Explain two major types of recommendation
 - Content-based (have features for items/users)
 - Collaborative filtering (only have scores for item+user pairs)
 - Detailed Approach: Matrix Factorization + SGD
- Evaluation:
 - Precision/recall for binary recs