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Dim. Reduction/Embedding
Unit Objectives

• Goals of dimensionality reduction
• Reduce feature vector size (keep signal, discard noise)
• “Interpret” features: visualize/explore/understand

• Common approaches
• Principal Component Analysis (PCA)
• t-SNE (“tee-snee”)
• word2vec and other neural embeddings

• Evaluation Metrics
• Storage size - Reconstruction error
• “Interpretability” - Prediction error
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Example: 2D viz. of movies 
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Example: Genes vs. geography



Example: Eigen Clothing
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Principal Component Analysis
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Linear Projection to 1D
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Reconstruction from 1D to 2D
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2D Orthogonal Basis
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Which 1D projection is best?
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PCA Principles

• Minimize reconstruction error
• Should be able to recreate x from z

• Equivalent to maximizing variance
• Want z to retain maximum information

15Mike Hughes - Tufts COMP 135 - Spring 2019



Best Direction related to 
Eigenvalues of Data Covariance
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Principal Component Analysis

• Input: 
• X : training data, N x F

• N high-dim. example vectors 
• K : int, number of dimensions to discover

• Satisfies 1 <= K <= F

• Output:
• m : mean vector, size F
• V : learned eigenvector basis, K x F

• One F-dimensional vector for each component
• Each of the K vectors is orthogonal to every other
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Training step:  .fit()



Principal Component Analysis

• Input: 
• X : training data, N x F

• N high-dim. example vectors 
• Trained PCA “model” 

• m : mean vector, size F
• V : learned eigenvector basis, K x F

• One F-dimensional vector for each component
• Each of the K vectors is orthogonal to every other

• Output:
• Z : projected data, N x K
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Transformation step:  .transform()



PCA Demo

•http://setosa.io/ev/principal-
component-analysis/
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http://setosa.io/ev/principal-component-analysis/


Example: EigenFaces

20Mike Hughes - Tufts COMP 135 - Spring 2019



PCA: How to Select K?

• 1) Use downstream supervised task metric
• Regression error

• 2) Use memory constraints of task
• Can’t store more than 50 dims for 1M examples? 

Take K=50
• 3) Plot cumulative “variance explained”
• Take K that seems to capture 90% or all variance
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PCA Summary
PRO
• Usually, fast to train, fast to test

• Slow only if finding K eigenvectors of an F x F matrix is 
slow 

• Nested model
• PCA with K=5 has subset of params equal to PCA with

K=4

CON
• Learned basis known only up to +/- scaling
• Not often best for supervised tasks
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Visualization with t-SNE
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Credit: Luuk Derksen (https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-
8ef87e7915b)

https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b
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Credit: Luuk Derksen (https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-
8ef87e7915b)

https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b
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Practical Tips for t-SNE
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https://distill.pub/2016/misread-tsne/

• If dim is very high, preprocess with 
PCA to ~30 dims, then apply t-SNE

• Beware: Non-convex cost function

https://distill.pub/2016/misread-tsne/
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Matrix Factorization as
Learned “Embedding”
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Matrix Factorization (MF) 
• User ! represented by vector "# ∈ %&
• Item ' represented by vector () ∈ %&
• Inner product "#*() approximates the utility +#)
• Intuition: 

• Two items with similar vectors get similar utility scores 
from the same user;
• Two users with similar vectors give similar utility 

scores to the same item
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Word Embeddings



Word Embeddings (word2vec)
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Goal: map each word in vocabulary to an embedding vector
• Preserve semantic meaning in this new vector space

vec(swimming) – vec(swim) + vec(walk) = vec(walking)
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Word Embeddings (word2vec)
Goal: map each word in vocabulary to an embedding vector
• Preserve semantic meaning in this new vector space



How to embed?
Training
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Reward embeddings that predict nearby words 
in the sentence.
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Goal: learn weights

Credit: 
https://www.tensorflow.org/tutorials/representation/word2vec
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https://www.tensorflow.org/tutorials/representation/word2vec

