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Dim. Reduction/Embedding
Unit Objectives

• Goals of dimensionality reduction
• Reduce feature vector size (keep signal, discard noise)
• “Interpret” features: visualize/explore/understand

• Common approaches
• Principal Component Analysis (PCA) + Factor Analysis
• t-SNE (“tee-snee”)
• word2vec and other neural embeddings

• Evaluation Metrics
• Storage size - Reconstruction error
• “Interpretability” - Prediction error
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Example: Genes vs. geography
Nature, 2008
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Example: Genes vs. geography

Where possible, we based the geographic origin on the observed country data 
for grandparents. We used a ‘strict consensus’ approach: if all observed 
grandparents originated from a single country, we used that country as the 
origin. If an individual’s observed grandparents originated from different 
countries, we excluded the individual. Where grandparental data were 
unavailable, we used the individual’s country of birth. 

Total sample size after exclusion: 1,387 subjects
Features: over half a million variable DNA sites in the human genome

Nature, 2008
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Eigenvectors and Eigenvalues



9Mike Hughes - Tufts COMP 135 - Spring 2019

Source: https://textbooks.math.gatech.edu/ila/eigenvectors.html

https://textbooks.math.gatech.edu/ila/eigenvectors.html


Demo: What is an Eigenvector?

• http://setosa.io/ev/eigenvectors-and-
eigenvalues/
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http://setosa.io/ev/eigenvectors-and-eigenvalues/


Centering the Data
Goal: each feature’s mean = 0.0
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Why center?

• Think of mean vector as simplest possible 
“reconstruction” of a dataset
• No example specific parameters, just one F-

dim vector
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Principal Component Analysis
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Reconstruction with PCA
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Principal Component Analysis

• Input: 
• X : training data, N x F

• N high-dim. example vectors 
• K : int, number of components

• Satisfies 1 <= K <= F

• Output: 
• m : mean vector, size F
• W : learned basis of eigenvectors, F x K

• One F-dim. vector (magnitude 1) for each component
• Each of the K vectors is orthogonal to every other
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Training step:  .fit()



Principal Component Analysis

• Input: 
• X : training data, N x F

• N high-dim. example vectors 
• Trained PCA “model” 

• m : mean vector, size F
• W : learned basis of eigenvectors, F x K

• One F-dim. vector (magnitude 1) for each component
• Each of the K vectors is orthogonal to every other

• Output:
• Z : projected data, N x K
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Transformation step:  .transform()



PCA Demo

•http://setosa.io/ev/principal-
component-analysis/
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http://setosa.io/ev/principal-component-analysis/


Example: EigenFaces
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Credit: Erik Sudderth



PCA Principles

• Minimize reconstruction error
• Should be able to recreate x from z

• Equivalent to maximizing variance
• Want reconstructions to retain maximum 

information
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PCA: How to Select K?

• 1) Use downstream supervised task metric
• Regression error

• 2) Use memory constraints of task
• Can’t store more than 50 dims for 1M examples? 

Take K=50
• 3) Plot cumulative “variance explained”
• Take K that seems to capture most or all variance
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Empirical Variance of Data X

• (Assumes each feature is centered)
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Variance of reconstructions
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Proportion of Variance Explained 
by first K components
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PVE(K) =

PK
k=1 �kPF
f=1 �f



Variance explained curve
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PCA Summary
PRO
• Usually, fast to train, fast to test

• Slowest step: finding K eigenvectors of an F x F matrix
• Nested model

• PCA with K=5 overlaps with PCA with K=4

CON
• Sensitive to rescaling of input data features
• Learned basis known only up to +/- scaling
• Not often best for supervised tasks
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PCA: Best Practices

• If features all have different units
• Try rescaling to all be within (-1, +1) or have 

variance 1

• If features have same units, may not need to do 
this
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Beyond PCA: Factor Analysis
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A Probabilistic Model
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A Probabilistic Model
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X = WZ +M + E
In terms of matrix math:

xi = Wzi +m+ ✏i



A Probabilistic Model
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Face Dataset
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Each pixel might need own 
variance!
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Factor Analysis

• Finds a linear basis like PCA, but allows per-
feature estimation of variance

• Small detail: columns of estimated basis may 
not be orthogonal
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PCA vs Factor Analysis
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Matrix Factorization and
Singular Value Decomposition
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Matrix Factorization (MF) 
• User ! represented by vector "# ∈ %&
• Item ' represented by vector () ∈ %&
• Inner product "#*+) approximates the utility ,#)
• Intuition: 
• Two items with similar vectors get similar utility scores 

from the same user;
• Two users with similar vectors give similar utility 

scores to the same item
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General Matrix Factorization
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=

X = ZW



SVD: 
Singular Value Decomposition
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Credit: Wikipedia



Truncated SVD
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Recall: Eigen Decomposition
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�1,�2, . . .�K

w1, w2, . . . wK



Two ways to “fit” PCA
• First, apply “centering” to X
• Then, do one of these two options:

• 1) Compute SVD of X
• Eigenvalues are rescaled entries of the diagonal D
• Basis = first K columns of V

• 2) Compute covariance Cov(X)
• Eigenvalues = largest eigenvalues of Cov(X)
• Basis = corresponding eigenvectors of Cov(X)
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Visualization with t-SNE

43Mike Hughes - Tufts COMP 135 - Spring 2019



Reducing Dimensionality
of Digit Images
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INPUT: Each image represented by 784-dimensional vector

Apply PCA transformation with K=2

OUTPUT: Each image is a 2-dimensional vector
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Credit: Luuk Derksen (https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-
8ef87e7915b)

https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b
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Credit: Luuk Derksen (https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-
8ef87e7915b)

https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b
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Practical Tips for t-SNE

48Mike Hughes - Tufts COMP 135 - Spring 2019

https://distill.pub/2016/misread-tsne/

• If dim is very high, preprocess with 
PCA to ~30 dims, then apply t-SNE

• Beware: Non-convex cost function

https://distill.pub/2016/misread-tsne/
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Word Embeddings



Word Embeddings (word2vec)
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Goal: map each word in vocabulary to an embedding vector
• Preserve semantic meaning in this new vector space

vec(swimming) – vec(swim) + vec(walk) = vec(walking)
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Word Embeddings (word2vec)
Goal: map each word in vocabulary to an embedding vector
• Preserve semantic meaning in this new vector space



How to embed?
Training
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Reward embeddings that predict nearby words 
in the sentence.
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Goal: learn weights

Credit: 
https://www.tensorflow.org/tutorials/representation/word2vec
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https://www.tensorflow.org/tutorials/representation/word2vec


Embeddings Everywhere

• seq2vec

• med2vec

• graph2vec
• https://arxiv.org/abs/1707.05005

• https://arxiv.org/abs/1805.11921
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Credit:
Ivanov & Burnaev ICML 2018

Credit:
Choi et al. KDD 2016

https://arxiv.org/abs/1707.05005
https://arxiv.org/pdf/1805.11921.pdf
https://www.kdd.org/kdd2016/papers/files/rpp0303-choiA.pdf

