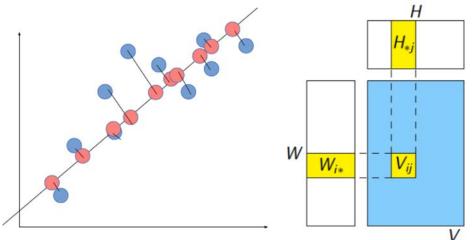
Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

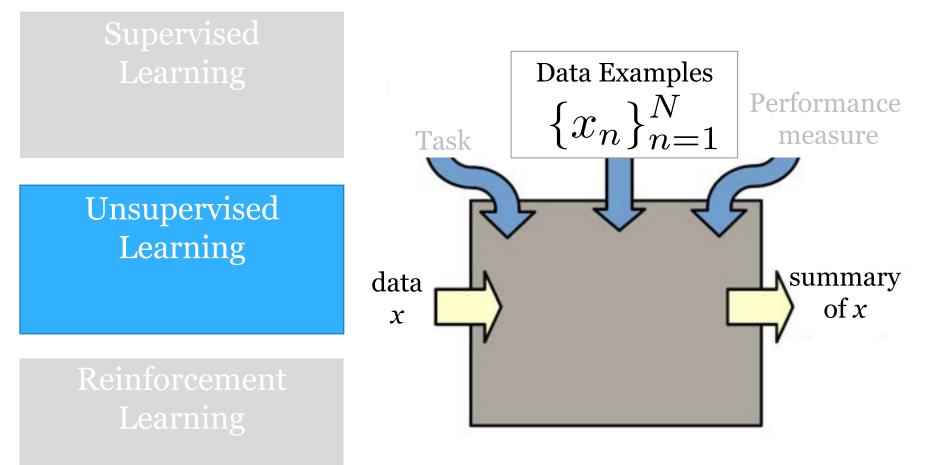
Dimensionality Reduction & Embedding (part 2/2)

Prof. Mike Hughes

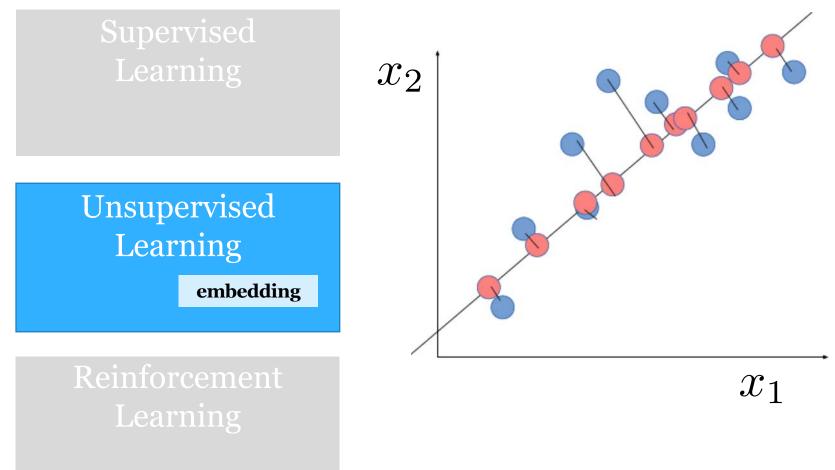


Many ideas/slides attributable to: Emily Fox (UW), Erik Sudderth (UCI)

What will we learn?



Task: Embedding



Dim. Reduction/Embedding Unit Objectives

• Goals of dimensionality reduction

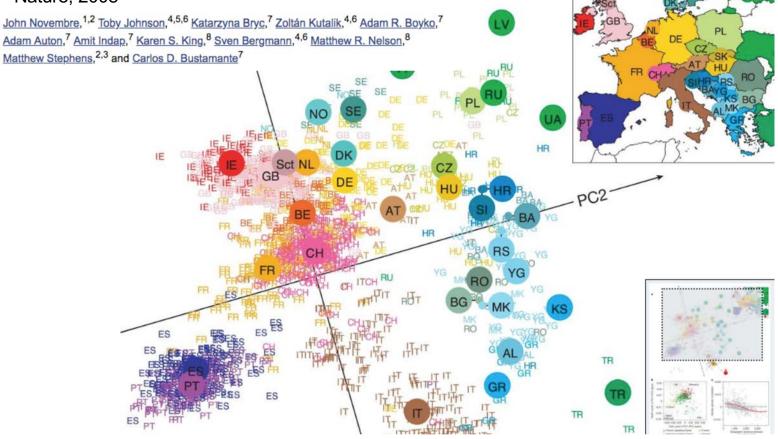
- Reduce feature vector size (keep signal, discard noise)
- "Interpret" features: visualize/explore/understand
- Common approaches
 - Principal Component Analysis (PCA) + Factor Analysis
 - t-SNE ("tee-snee")
 - word2vec and other neural embeddings
- Evaluation Metrics
 - Storage size
 - "Interpretability"

- Reconstruction error
- Prediction error

Example: Genes vs. geography

Genes mirror geography within Europe

Nature, 2008



Example: Genes vs. geography

Genes mirror geography within Europe

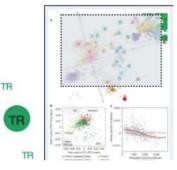
Nature, 2008

John Novembre, ^{1,2} Toby Johnson, ^{4,5,6} Katarzyna Bryc, ⁷ Zoltán Kutalik, ^{4,6} Adam R. Boyko, ⁷ Adam Auton, ⁷ Amit Indap, ⁷ Karen S. King, ⁸ Sven Bergmann, ^{4,6} Matthew R. Nelson, ⁸ Matthew Stephens, ^{2,3} and Carlos D. Bustamante⁷

Where possible, we based the geographic origin on the observed country data for grandparents. We used a 'strict consensus' approach: if all observed grandparents originated from a single country, we used that country as the origin. If an individual's observed grandparents originated from different countries, we excluded the individual. Where grandparental data were unavailable, we used the individual's country of birth.

Total sample size after exclusion: 1,387 subjects Features: over half a million variable DNA sites in the human genome

ES PT



TR

Eigenvectors and Eigenvalues

Eigenvalues and Eigenvectors

Here is the most important definition in this text.

 \triangle **Definition.** Let *A* be an $n \times n$ matrix.

- 1. An *eigenvector* of A is a *nonzero* vector v in \mathbb{R}^n such that $Av = \lambda v$, for some scalar λ .
- 2. An *eigenvalue* of *A* is a scalar λ such that the equation $Av = \lambda v$ has a *nontrivial* solution.

If $Av = \lambda v$ for $v \neq 0$, we say that λ is the *eigenvalue for* v, and that v is an *eigenvector for* λ .

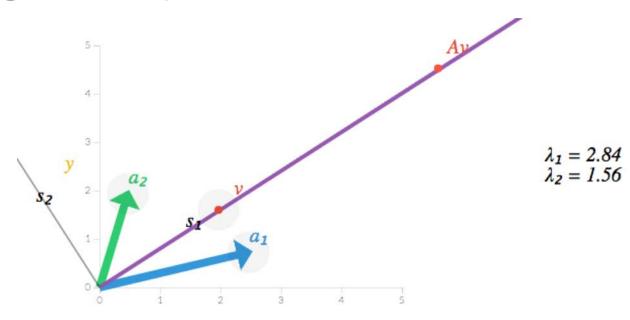
The German prefix "eigen" roughly translates to "self" or "own". An eigenvector of *A* is a vector that is taken to a multiple of itself, which partially explains the terminology.

Note. Eigenvalues and eigenvectors are only for square matrices.

Source: https://textbooks.math.gatech.edu/ila/eigenvectors.html

Demo: What is an Eigenvector?

<u>http://setosa.io/ev/eigenvectors-and-eigenvalues/</u>



Centering the Data Goal: each feature's mean = 0.0

Why center?

- Think of mean vector as simplest possible "reconstruction" of a dataset
- No example specific parameters, just one Fdim vector

$$\min_{m \in \mathbb{R}^F} \quad \sum_{n=1}^N (x_n - m)^T (x_n - m)$$

$$m^* = \operatorname{mean}(x_1, \dots x_N)$$

Principal Component Analysis

Reconstruction with PCA

 $x_i = W z_i + m$

F vector	F x K	K vector	F vector
High- dim. data	Basis	Low-dim vector	mean

Principal Component Analysis Training step: .fit()

- Input:
 - X : training data, N x F
 - N high-dim. example vectors
 - K : int, number of components
 - Satisfies 1 <= K <= F
- Output:
 - m : mean vector, size F
 - W : learned basis of eigenvectors, F x K
 - One F-dim. vector (magnitude 1) for each component
 - Each of the K vectors is orthogonal to every other

Principal Component Analysis

Transformation step: .transform()

- Input:
 - X : training data, N x F
 - N high-dim. example vectors
 - Trained PCA "model"
 - m : mean vector, size F
 - W : learned basis of eigenvectors, F x K
 - One F-dim. vector (magnitude 1) for each component
 - Each of the K vectors is orthogonal to every other
- Output:
 - Z : projected data, N x K

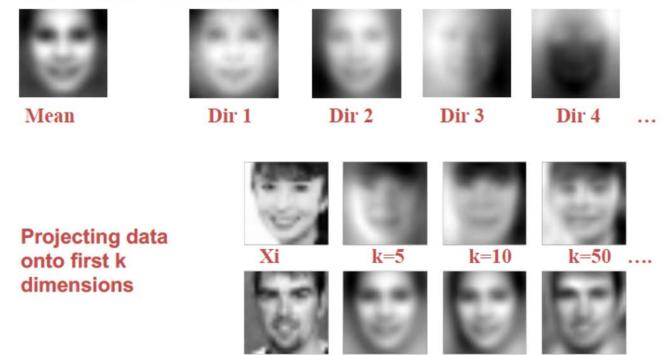
PCA Demo

<u>http://setosa.io/ev/principal-</u> <u>component-analysis/</u>

Example: EigenFaces

Ex: Viola Jones data set

- 24x24 images of faces = 576 dimensional measurements
- Take first K PCA components



Credit: Erik Sudderth

PCA Principles

• Minimize **reconstruction error**

• Should be able to recreate x from z

- Equivalent to maximizing variance
 - Want reconstructions to retain maximum information

PCA: How to Select K?

- 1) Use downstream supervised task metric
 - Regression error
- 2) Use memory constraints of task
 - Can't store more than 50 dims for 1M examples? Take K=50
- 3) Plot cumulative "variance explained"
 - Take K that seems to capture most or all variance

Empirical Variance of Data X

$$\operatorname{Var}(X) = \frac{1}{N} \sum_{n=1}^{N} \sum_{f=1}^{F} x_{nf}^{2}$$
$$= \frac{1}{N} \sum_{n=1}^{N} x_{n}^{T} x_{n}$$

• (Assumes each feature is centered)

Variance of reconstructions

$$= \frac{1}{N} \sum_{n=1}^{N} x_n^T x_n$$

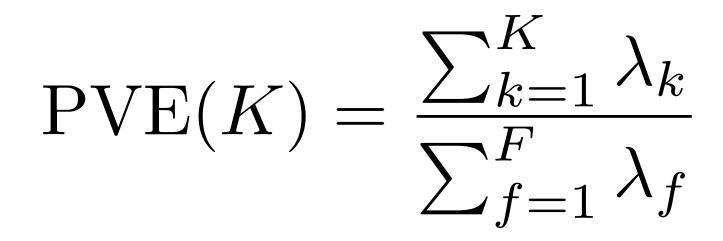
$$= \frac{1}{N} \sum_{n=1}^{N} (z_{n1}w_1 + \ldots + z_{nK}w_K)^T (z_{n1}w_1 + \ldots + z_{nK}w_K)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk}^{2}$$
$$= \sum_{k=1}^{K} \lambda_{k}$$

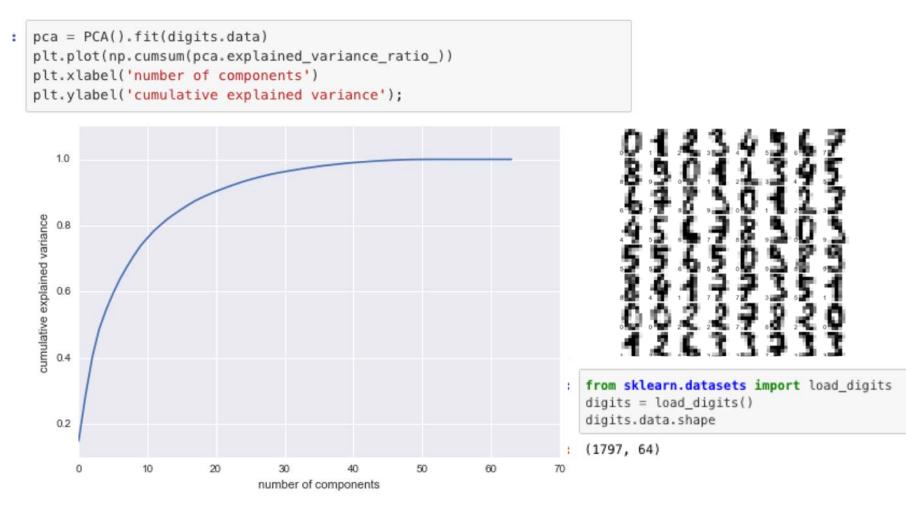
k=1

Just sum up the top K eigenvalues!

Proportion of Variance Explained by first K components



Variance explained curve



PCA Summary

PRO

- Usually, fast to train, fast to test
 - Slowest step: finding K eigenvectors of an F x F matrix
- Nested model
 - PCA with K=5 overlaps with PCA with K=4

CON

- Sensitive to rescaling of input data features
- Learned basis known only up to +/- scaling
- Not often best for supervised tasks

PCA: Best Practices

- If features all have different units
 - Try rescaling to all be within (-1, +1) or have variance 1
- If features have same units, may not need to do this

Beyond PCA: Factor Analysis

A Probabilistic Model

 $x_i = W z_i + m + \epsilon_i$

F vectorF x KK vectorF vectorF vectorHigh-
dim.BasisLow-dim
vectormeannoise
noisedim.
datavectornoise

 $\epsilon_i \sim \mathcal{N}(0, I_F)$

A Probabilistic Model

$x_i = W z_i + m + \epsilon_i$

In terms of matrix math:

X = WZ + M + E

A Probabilistic Model

$$x_i = W z_i + m + \epsilon_i$$

F vector F x K K vector F vector F vector
High-
dim. data Basis Low-dim mean noise

$$\epsilon_i \sim \mathcal{N}(0, \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix})$$

Face Dataset

First centered Olivetti faces

$$\epsilon_i \sim \mathcal{N}(0, \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$$

Is this noise model realistic?

Each pixel might need own variance!

$$\epsilon_i \sim \mathcal{N}(0, \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix})$$

Factor Analysis

sklearn.decomposition.FactorAnalysis

class sklearn.decomposition. FactorAnalysis (n_components=None, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None, svd_method='randomized', iterated_power=3, random_state=0) ¶ [source]

Finds a linear basis like PCA, but allows *per-feature* estimation of variance

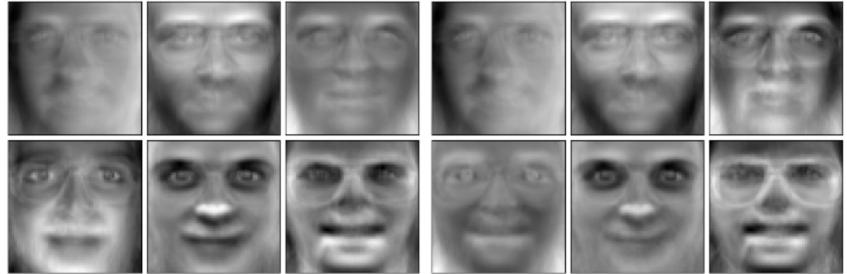
$$\epsilon_i \sim \mathcal{N}(0, \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix})$$

Γ__2

• Small detail: columns of estimated basis may not be orthogonal

PCA vs Factor Analysis

genfaces - PCA using randomized SVD - Train time 0.1 Factor Analysis components - FA - Train time 0.1s



Matrix Factorization and Singular Value Decomposition

Matrix Factorization (MF)

- User *i* represented by vector $\mathbf{z}_i \in \mathbb{R}^k$
- Item *j* represented by vector $w_j \in \mathbb{R}^k$
- Inner product $\mathbf{z}_i^{\mathsf{T}} \mathbf{w}_j$ approximates the utility X_{ij}
- Intuition:
 - Two items with similar vectors get similar utility scores from the same user;
 - Two users with similar vectors give similar utility scores to the same item

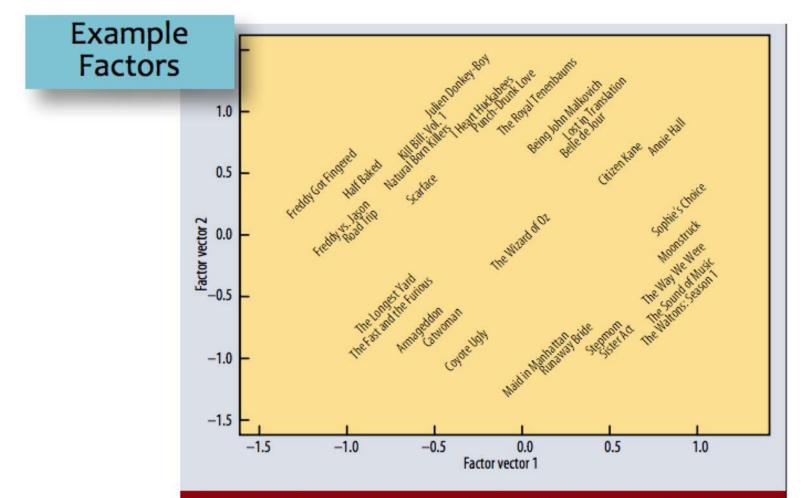
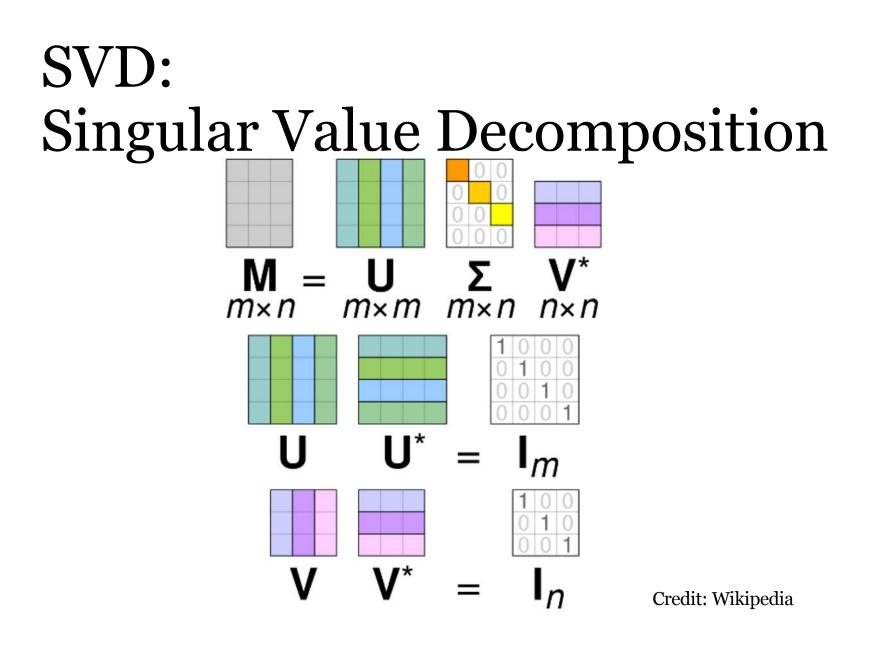


Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize data. Selected movies are placed at the appropriate spot based on their factor vectors in two dimensions. The plot reveals distinct genres, including clusters of movies with strong female leads, fraternity humor, and quirky independent films.

Figure from Koren et al. (2009)

General Matrix Factorization

= ZW

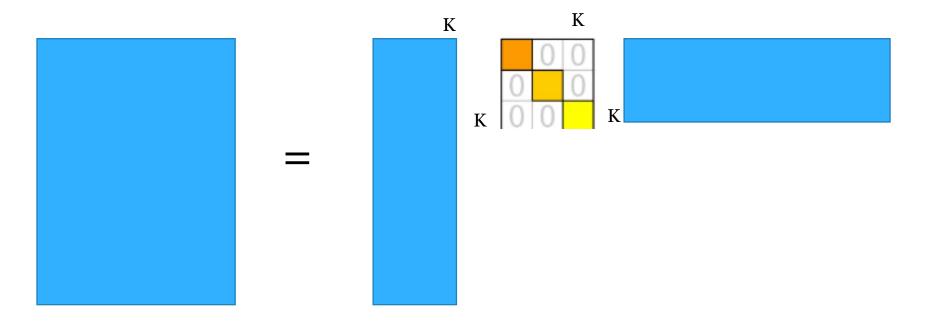


Truncated SVD

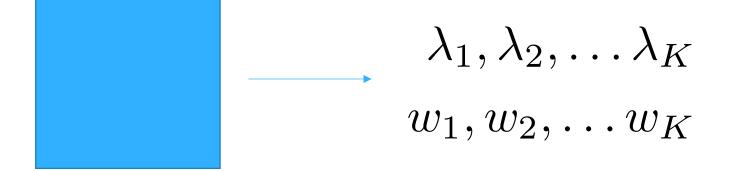
sklearn.decomposition.TruncatedSVD

class sklearn.decomposition. TruncatedSVD (n_components=2, algorithm='randomized', n_iter=5, random_state=None, tol=0.0)

$X = UDV^T$



Recall: Eigen Decomposition

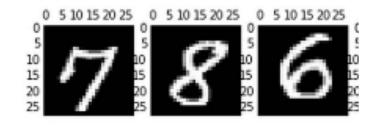


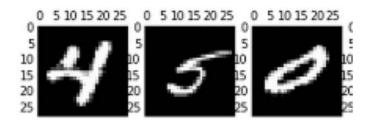
Two ways to "fit" PCA

- First, apply "centering" to X
- Then, do one of these two options:
- 1) Compute SVD of X
 - Eigenvalues are rescaled entries of the diagonal D
 - Basis = first K columns of V
- 2) Compute covariance Cov(X)
 - Eigenvalues = largest eigenvalues of Cov(X)
 - Basis = corresponding eigenvectors of Cov(X)

Visualization with t-SNE

Reducing Dimensionality of Digit Images

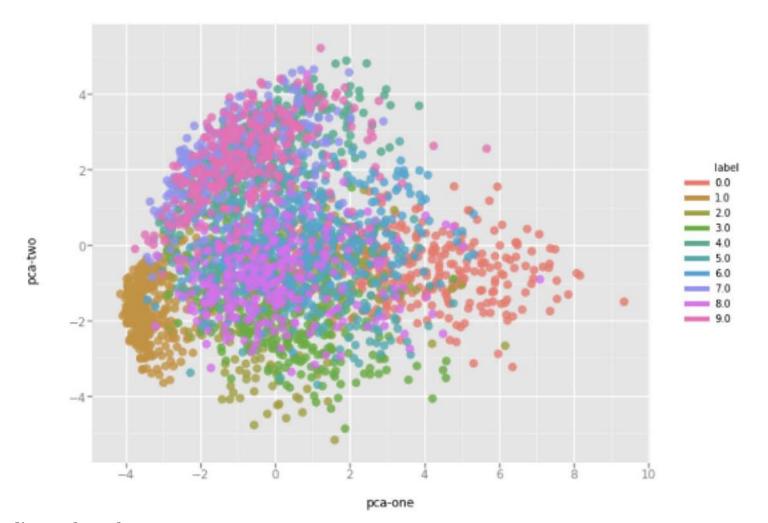




INPUT: Each image represented by 784-dimensional vector

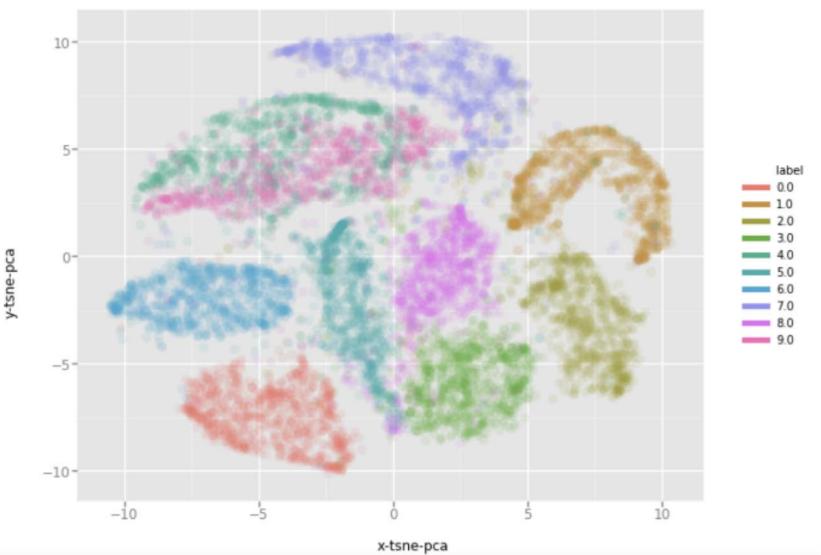
Apply PCA transformation with K=2

OUTPUT: Each image is a 2-dimensional vector

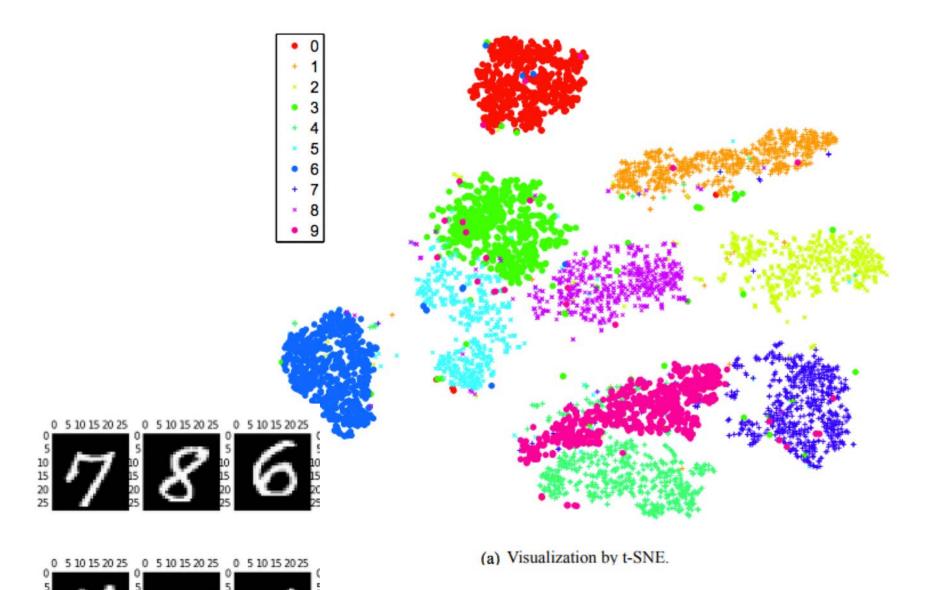


First and Second Principal Components colored by digit

Credit: Luuk Derksen (https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b)



Credit: Luuk Derksen (https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b)



Mike Hughes - Tufts COMP 135 - Spring 2019

Practical Tips for t-SNE

- If dim is very high, preprocess with PCA to ~30 dims, then apply t-SNE
- Beware: Non-convex cost function

How to Use t-SNE Effectively

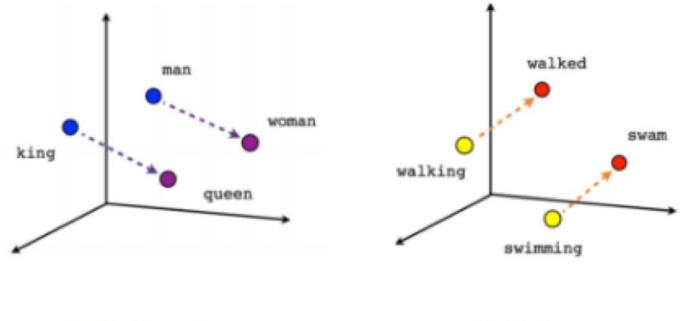
https://distill.pub/2016/misread-tsne/

Word Embeddings

Word Embeddings (word2vec)

Goal: map each word in vocabulary to an embedding vector

• Preserve semantic meaning in this new vector space



Male-Female

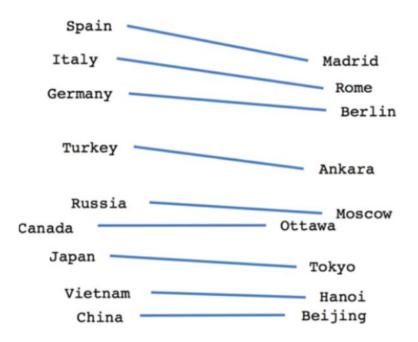
Verb tense

vec(swimming) - vec(swim) + vec(walk) = vec(walking)

Word Embeddings (word2vec)

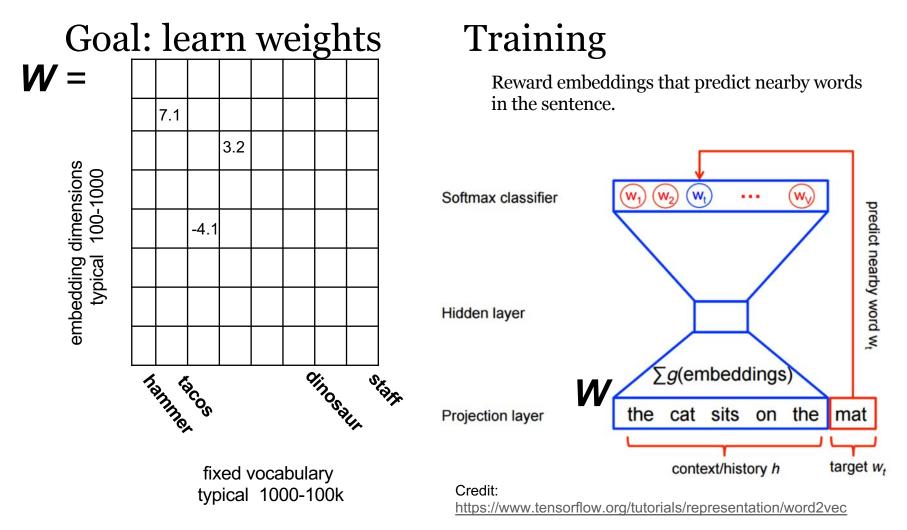
Goal: map each word in vocabulary to an embedding vector

• Preserve semantic meaning in this new vector space



Country-Capital

How to embed?



Embeddings Everywhere

- seq2vec
- med2vec

• graph2vec

