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Clustering: 
Unit Objectives

• Understand key challenges
• How to choose the number of clusters?
• How to choose the shape of clusters?

• K-means clustering (deep dive)
• Shape: Linear Boundaries (nearest Euclidean centroid)
• Explain algorithm as instance of “coordinate descent”

• Update some variables while holding others fixed
• Need smart init and multiple restarts to avoid local optima

• Mixture models (primer)
• Advantages of soft assignments and covariances
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Examples of Clustering
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Clustering Animals by Features

7Mike Hughes - Tufts COMP 135 - Spring 2019



Clustering Images
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Image Compression
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This image on the right achieves a 
compression factor of around 1 million!

Possible pixel values (R, G, B):
255 * 255 * 255 = 16 million

Possible pixel values: 
One of 16 fixed (R,G,B) values 
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Understanding Genes



How to cluster these points?
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How to cluster these points?
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Key Questions
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min
m2RF

NX

n=1

(xn �m)T (xn �m)



K-Means
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Input:

• Dataset of N example feature vectors

• Number of clusters K

15Mike Hughes - Tufts COMP 135 - Spring 2019



K-Means Goals

• Assign each example to one of K clusters
• Assumption: Clusters are exclusive

• Minimize Euclidean distance from examples to 
cluster centers
• Assumption: Isotropic Euclidean distance (all 

features weighted equally, no covariance modeled) 
is a good metric for your data
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K-Means output

• Centroid Vectors (one per cluster k in 1, … K)

• Assignments (one per example n in 1 … N)
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One-hot vector indicates 
which of K clusters 
example n is assigned to

Length = # features F
Real-valued



Use Euclidean distance
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K-means Optimization Problem
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K-Means Algorithm

20Mike Hughes - Tufts COMP 135 - Spring 2019

Initialize cluster means
Repeat until converged

1) Update per-example assignment

2) Update per-cluster centroid
For each k in 1:K:

Set          to mean of data vectors assigned to k

For each n in 1:N:
Find cluster k* that minimizes
Set to indicate k*



K-Means Algorithm
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Initialize cluster means
Repeat until converged

1) Update per-example assignment

2) Update per-cluster centroid



Updates each improve cost
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K-Means Algo:
Coordinate Ascent
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E-step or per-example step: Update Assignments
M-step or per-centroid step: Update Centroid Locations
Each step yields cost equal or lower than before

Credit: Jake VanderPlas

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html


Demo!

http://stanford.edu/class/ee103/visualizations/
kmeans/kmeans.html
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http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html


Demo 2 (Choose initial clusters)
https://www.naftaliharris.com/blog/visualizing-
k-means-clustering/

25Mike Hughes - Tufts COMP 135 - Spring 2019

Pick a dataset and fix a 
K value (e.g. 2 clusters)

Can you find a different 
fixed point solution from 
your neighbor?

What does this mean
about the objective?

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


K-means Boundaries are Linear
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Decisions when applying
k-means
• How to initialize the clusters?

• How to choose K?
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Initialization: K-means++
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Possible Initializations
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• Draw K random centroid locations

• Choose K data vectors as centroids
• Uniformly at random

What can go wrong?



• Toy Example: Cluster these 4 points with K=2
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D units

1 units

Example



No Guarantees on Cost!
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BAD solution.   Cost scales with distance D, which could be arbitrarily larger than 1

OPTIMAL solution.   Cost scales will be O(1)



Better init: k-means++
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Arthur & Vassilvitskii SODA ‘07

Step 1: choose an example uniformly at random as first centroid
Repeat for k = 2, 3, … K: 

Choose example based on distance from nearest centroid



k-means++:
Guarantees on Quality
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Arthur & Vassilvitskii SODA ‘07

Theorem: This initialization will achieve score 
that is O(log K) of optimal score.

Step 1: choose an example uniformly at random as first centroid
Repeat for k = 2, 3, … K: 

Choose with probability proportional to distance from nearest centroid



Use cost to decide among 
multiple runs of k-means
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How to pick K in K-means?
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Same data. Which K is best?
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Use cost function? No!
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At each K, the global optimal 
cost always decreases. (Local 
optima may not)

Limit as K -> N, cost is zero.



Add complexity penalty!
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Want adding additional clusters to increase cost, if don’t help “enough”



Computation Issues
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K-Means Computation
• Most expensive step: Updating assignments

• N x K distance calculations

• Scalable?
• Don’t need to update all examples, just grab a minibatch
• Can do stochastic learning rate updates too

• Parallelizable?
• Yes. Given fixed centroids, can process minibatches of 

examples (the assignment step) in parallel
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Improved clustering:
Gaussian mixture model

41Mike Hughes - Tufts COMP 135 - Spring 2019



Improving K-Means

• Assign each example to one of K clusters
• Assumption: Clusters are exclusive
• Improvement: Soft probabilistic assignment

• Minimize Euclidean distance from examples to 
cluster centers
• Assumption: Isotropic Euclidean distance (all 

features weighted equally, no covariance modeled) 
is a good metric for your data
• Improvement: Model cluster covariance

42Mike Hughes - Tufts COMP 135 - Spring 2019



Gaussian Mixture Model
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Gaussian Mixture Model
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• Mean Vectors (one per cluster k in 1, … K)

• Covariance Matrix (one per cluster k in 1 … K)

• Soft assignments (one per example n in 1 … N)
Probabilistic!
Vector sums to one

Length = # features F
Real-valued

F x F square symmetric matrix
Positive definite (invertible)



Covariance Models
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Most similar 
to k-means

More flexible

Credit: Jake VanderPlas

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html


GMM Training
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Maximize the likelihood of the data

Beyond this course: Can show this looks a lot like K-means’ 
simplified objective

Algorithm: Coordinate ascent!
E-step : Update soft assignments r
M-step: Update means and covariances



Special Case

• K-means is a GMM with:
• Hard winner-take-all assignments
• Spherical covariance constraints
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Clustering: 
Unit Objectives

• Understand key challenges
• How to choose the number of clusters?
• How to choose the shape of clusters?

• K-means clustering (deep dive)
• Shape: Linear Boundaries (nearest Euclidean centroid)
• Explain algorithm as instance of “coordinate descent”

• Update some variables while holding others fixed
• Need smart init and multiple restarts to avoid local optima

• Mixture models (primer)
• Advantages of soft assignments and covariances
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