Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Clustering: K-Means & Mixture models

Prof. Mike Hughes

Many ideas/slides attributable to: Emily Fox (UW), Erik Sudderth (UCI)

2

What will we learn?

Task: Clustering

Supervised Learning

Unsupervised Learning

clustering

Reinforcement Learning

Clustering: Unit Objectives

- Understand key challenges
 - How to choose the number of clusters?
 - How to choose the shape of clusters?
- K-means clustering (deep dive)
 - Shape: Linear Boundaries (nearest Euclidean centroid)
 - Explain algorithm as instance of "coordinate descent"
 - Update some variables while holding others fixed
 - Need smart init and multiple restarts to avoid local optima
- Mixture models (primer)
 - Advantages of soft assignments and covariances

Examples of Clustering

Clustering Animals by Features

Data set of 50 animals, 85 binary features (e.g., longneck, water, smelly)

Clustering Images

(a) Cluster Centers

- (b) Cluster 1
- er 1 (c) Cluster 2
- (d) Cluster 3
- (e) Cluster 4

(f) Cluster 5

(g) Cluster 6

(h) Cluster 7

(i) Cluster 8

(j) Cluster 9

(k) Cluster 10

(l) Cluster 11

(m) Cluster 12

(n) Cluster 13

(o) Cluster 14

(p) Cluster 15

(q) Cluster 16

Image Compression

Original Image

Possible pixel values (R, G, B): 255 * 255 * 255 = 16 million

16-color Image

Possible pixel values: One of 16 fixed (R,G,B) values

This image on the right achieves a compression factor of around 1 million!

Mike Hughes - Tufts COMP 135 - Spring 2019

How to cluster these points?

How to cluster these points?

Key Questions

Input:

• Dataset of *N* example feature vectors $\{x_n\}_{n=1}^N$

$$x_n = [x_{n1} \ x_{n2} \ \dots \ x_{nF}]$$

• Number of clusters *K*

K-Means Goals

- Assign each example to one of K clusters
 - Assumption: Clusters are exclusive
- Minimize Euclidean distance from examples to cluster centers
 - Assumption: Isotropic Euclidean distance (all features weighted equally, no covariance modeled) is a good metric for your data

K-Means output

• Centroid Vectors (one per cluster k in 1, ... K)

 $\mu_k = \begin{bmatrix} \mu_{k1} \ \mu_{k2} \ \dots \ \mu_{kF} \end{bmatrix}$ Length = # features F Real-valued

• Assignments (one per example n in 1 ... N)

$$\begin{aligned} z_n &= \begin{bmatrix} z_{n1} & z_{n2} & \dots & z_{nK} \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix} & & \text{One-hot vector indicates} \\ &= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} & & \text{which of K clusters} \\ &= xample n \text{ is assigned to} \end{aligned}$$

Use Euclidean distance

dist
$$(x_n, \mu_k) = ||x_n - \mu_k||_2 = \sqrt{\sum_{f=1}^F (x_{nf} - \mu_{kf})^2}$$

K-means Optimization Problem

 $\cot(z,\mu)$

 $\min_{z,\mu}$

N = K $\sum \sum z_{nk} \operatorname{dist}(x_n, \mu_k)$ n=1 k=1

K-Means Algorithm

Initialize cluster means Repeat until converged 1) Update per-example assignment For each n in 1:N: Find cluster k* that minimizes $dist(x_n, \mu_k)$ Set Z_n to indicate k*

2) Update per-cluster centroid For each k in 1:K: Set μ_k to mean of data vectors assigned to k

K-Means Algorithm

Initialize cluster meansRepeat until converged1) Update per-example assignment

$$z_{nk} = \begin{cases} 1 & \text{if } \operatorname{dist}(x_n, \mu_k) \leq \operatorname{dist}(x_n, \mu_j) \quad \forall j \neq k \\ 0 & \text{o.w.} \end{cases}$$

2) Update per-cluster centroid $\mu_k = \frac{\sum_n z_{nk} x_n}{\sum_n z_{nk}}$

Updates each improve cost

 $N \quad K$ $\sum \sum z_{nk} \operatorname{dist}(x_n, \mu_k)$ min $^{z,\mu}$ n = 1 k = 1

 $\cot(z,\mu)$

K-Means Algo: Coordinate Ascent

Credit: Jake VanderPlas

E-step or per-example step: Update Assignments M-step or per-centroid step: Update Centroid Locations Each step yields cost equal or lower than before

Demo!

http://stanford.edu/class/ee103/visualizations/ kmeans/kmeans.html

Demo 2 (Choose initial clusters)

<u>https://www.naftaliharris.com/blog/visualizing-</u> <u>k-means-clustering/</u>

Pick a dataset and fix a K value (e.g. 2 clusters)

Can you find a different fixed point solution from your neighbor?

What does this mean about the objective?

K-means Boundaries are Linear

Decisions when applying k-means

- How to initialize the clusters?
- How to choose K?

Initialization: *K-means++*

Possible Initializations

- Draw K random centroid locations
- Choose K data vectors as centroids
 - Uniformly at random

What can go wrong?

Example

• Toy Example: Cluster these 4 points with K=2

No Guarantees on Cost!

BAD solution. Cost scales with distance D, which could be arbitrarily larger than 1

OPTIMAL solution. Cost scales will be O(1)

Better init: k-means++

Arthur & Vassilvitskii SODA '07

Step 1: choose an example uniformly at random as first centroid Repeat for k = 2, 3, ... K:

Choose example based on distance from nearest centroid

$$Pr(\mu_k = x_n) \propto \min_{j \in \{1,2,\dots,k-1\}} \operatorname{dist}(x_n, \mu_j)$$

k-means++: Guarantees on Quality

Step 1: choose an example uniformly at random as first centroid Repeat for k = 2, 3, ... K:

Choose with probability proportional to distance from nearest centroid

$$Pr(\mu_k = x_n) \propto \min_{j \in \{1, 2, \dots, k-1\}} \operatorname{dist}(x_n, \mu_j)$$

Theorem: This initialization will achieve score that is *O*(*log K*) of optimal score.

Use cost to decide among multiple runs of k-means

How to pick K in K-means?

Same data. Which K is best?

K=3

K=4

Use cost function? No!

1000

۵

5

At each K, the global optimal cost always decreases. (Local optima may not)

Limit as K -> N, cost is **zero**.

15

2

10

Mike Hughes - Tufts COMP 135 - Spring 2019

Add complexity penalty!

Want adding additional clusters to increase cost, if don't help "enough"

$$J(z,\mu) = \cot(z,\mu) + \lambda \operatorname{penalty}(K)$$

Computation Issues

K-Means Computation

- Most expensive step: Updating assignments
 - N x K distance calculations
- Scalable?
 - Don't need to update all examples, just grab a minibatch
 - Can do stochastic learning rate updates too
- Parallelizable?
 - Yes. Given fixed centroids, can process minibatches of examples (the assignment step) in parallel

Improved clustering: Gaussian mixture model

Improving K-Means

- Assign each example to one of K clusters
 - Assumption: Clusters are exclusive
 - Improvement: Soft probabilistic assignment
- Minimize Euclidean distance from examples to cluster centers
 - Assumption: Isotropic Euclidean distance (all features weighted equally, no covariance modeled) is a good metric for your data
 - Improvement: Model cluster covariance

Gaussian Mixture Model

gmm = GMM(n_components=4, covariance_type='full', random_state=42)
plot_gmm(gmm, X_stretched)

Mike Hughes - Tufts COMP 135 - Spring 2019

Gaussian Mixture Model

 \sum_{k}

• Mean Vectors (one per cluster k in 1, ... K)

 $\mu_k = \begin{bmatrix} \mu_{k1} \ \mu_{k2} \ \dots \ \mu_{kF} \end{bmatrix}$ Length = # features F Real-valued

• Covariance Matrix (one per cluster k in 1 ... K)

F x F square symmetric matrix Positive definite (invertible)

• **Soft** assignments (one per example n in 1 ... N)

$$r_n = \begin{bmatrix} r_{n1} & r_{n2} & \dots & r_{nK} \end{bmatrix}$$
 Probabilistic!
Vector sums to one

Covariance Models

Credit: Jake VanderPlas

More flexible

Most similar to k-means

GMM Training

Maximize the likelihood of the data

$$\max_{\mu,\Sigma} \quad \sum_{n=1}^{N} \log p(x_n | \mu, \Sigma)$$

Beyond this course: Can show this looks a lot like K-means' simplified objective

Algorithm: Coordinate ascent! E-step : Update soft assignments r M-step: Update means and covariances

Special Case

- K-means is a GMM with:
 - Hard winner-take-all assignments
 - Spherical covariance constraints

Clustering: Unit Objectives

- Understand key challenges
 - How to choose the number of clusters?
 - How to choose the shape of clusters?
- K-means clustering (deep dive)
 - Shape: Linear Boundaries (nearest Euclidean centroid)
 - Explain algorithm as instance of "coordinate descent"
 - Update some variables while holding others fixed
 - Need smart init and multiple restarts to avoid local optima
- Mixture models (primer)
 - Advantages of soft assignments and covariances