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Fairness: 
Unit Objectives

• How to think systematically about end-to-end ML
• Where does data come from?
• What features am I measuring? What protected 

information can leak in unintentionally?
• Who will be impacted?

• How to define and measure notions fairness
• Use concepts: accuracy, TPR, FPR, PPV, NPV
• What is achievable? What is impossible?
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Example Concerns about Fairness
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Unfair image search



Unfair Word Embeddings
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Unfair Hiring?



Job Ad Classifier: Is this fair?



Unfair Recidivism Prediction
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Focus: Binary Classifier

• Let’s say we have two groups, A and B
• Could be any protected group (race / gender / age)

• We’re trying to build a binary classifier that will 
predict individuals as HIGH or LOW risk

• Likelihood of recidivism
• Ability to pay back a loan
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Group Discussion

• When should protected information (gender, 
race, age, etc) be provided as input to a 
predictor?

• Can you build a “race-blind” classifier?

• How could we measure if the predictions are 
fair?

• Is it enough to ensure accuracy parity?
• ACC( group A) = ACC( group B )
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Notation for Binary Classifier
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Example of Accuracy Parity
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Group A Group B

true outcomes
1 = would fail to appear in court

Y 0 0 1 1 0 0 1 1

classifier prediction
1 = too risky for bail

C 0 0 0 0 1 1 1 1

Is this fair?



Case Study: The COMPAS future 
crime prediction algorithm
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HIGH RISK of future crime
hold in jail before trial

LOW RISK of future crime
release before trial

COMPAS classifier

other features (e.g. demographics, questionnaire 
answers, family history)
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The COMPAS tool assigns defendants scores from 1 to 10 
that indicate how likely they are to reoffend based on 
more than 100 factors, including age, sex and criminal 
history. Notably, race is not used. These scores 
profoundly affect defendants’ lives: defendants who are 
defined as medium or high risk, with scores of 5-10, are 
more likely to be detained while awaiting trial than are 
low-risk defendants, with scores of 1-4.
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https://www.documentcloud.org/documents/2702103-Sample-Risk-Assessment-COMPAS-CORE.html
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Full Document: https://www.documentcloud.org/documents/2702103-Sample-Risk-
Assessment-COMPAS-CORE.html

https://www.documentcloud.org/documents/2702103-Sample-Risk-Assessment-COMPAS-CORE.html
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ProPublica says:
“Groups have different False Pos. Rates”



Compas Team Says:
“Groups have same predictive value”
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False Positive Rate  =

• When true outcome is 0, how often does 
classifier say “1”. 



True Positive Rate  =

• When true outcome is 1, how often does 
classifier say “1”. 



Positive Predictive Value =

When classifier says “1”, how often is true label 1.



Negative Predictive Value =
When classifier says “0”, how often is true label 0.
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ProPublica says:
“Groups have different False Pos. Rates”



Compas Team Says:
“Groups have same predictive value”
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Worksheet

https://docs.google.com/document/d/1zYWhWWYAzYUvpKowBBDSYEvCk1CG-nb74s83CaSqX2I/edit?usp=sharing
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Equation of the Day

FPR =
p

1� p

1� PPV

PPV
TPR

where prevalence p = Pr(Y = 1)

If two groups have different p values, can we simultaneously have 
TPR parity AND FPR parity AND PPV parity AND NPV parity?
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https://www.propublica.org/article/bias-in-criminal-risk-scores-
is-mathematically-inevitable-researchers-say

https://www.propublica.org/article/bias-in-criminal-risk-scores-is-mathematically-inevitable-researchers-say
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Unless classifier is perfect, must chose one:
Disparate Treatment (PPV or NPV not equal)

or Disparate Impact (FPR or TPR not equal)
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Try demo of making decisions from 
risk scores:
goo.gl/P8rmA3

goo.gl/P8rmA3
goo.gl/P8rmA3
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