Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2020f/

Regression Basics

Prof. Mike Hughes

Many slides attributable to: Erik Sudderth (UCI) Finale Doshi-Velez (Harvard) James, Witten, Hastie, Tibshirani (ISL/ESL books)

Objectives for Today (day 02)

- Understand 3 steps of a regression task
 - Training
 - Prediction
 - Evaluation
 - Metrics: Mean Squared Error vs Mean Absolute Error
- Try two methods (focus: prediction and evaluation)
 - Linear Regression
 - K-Nearest Neighbors

Task: Regression

is a numeric variable e.g. sales in \$\$

40

50

 ${\mathcal X}$

Mike Hughes - Tufts COMP 135 - Spring 2019

60

Regression Example: RideShares

Regression Example: RideShare

(Keith Chen)

Regression Example: RideShare

(Keith Chen)

Regression: Prediction Step

Goal: Predict response *y* well given features x

- Input: $x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]$ "features" Entries can be real-valued, or other "covariates" Entries (e.g. integer, binary) "predictors" "attributes"
- Output: $\hat{y}(x_i) \in \mathbb{R}$ "responses" "labels"

Scalar value like 3.1 or -133.7

Regression: Prediction Step

>>> # Given: pretrained regression object model
>>> # Given: 2D array of features x NF

>> x_NF.shape
(N, F)

>>> yhat_N1 = model.predict(x_NF)

>>> yhat_N1.shape (N,1)

Regression: Training Step

Goal: Given a labeled dataset, learn a **function** that can perform prediction well

- Input: Pairs of features and labels/responses $\{x_n,y_n\}_{n=1}^N$
- Output: $\hat{y}(\cdot): \mathbb{R}^F \to \mathbb{R}$

Regression: Training Step

>>> # Given: 2D array of features x_NF
>>> # Given: 1D array of responses/labels y N1

>>> y_N1.shape
(N, 1)
>>> x_NF.shape
(N, F)

>>> model = RegressionModel()
>>> model.fit(x_NF, y_N1)

Regression: Evaluation Step

Goal: Assess quality of predictions

- Input: Pairs of predicted and "true" responses $\{\hat{y}(x_n),y_n\}_{n=1}^N$
- Output: Scalar measure of error/quality
 - Measuring Error: **lower** is better
 - Measuring Quality: **higher** is better

Visualizing errors

Regression: Evaluation Metrics

• mean squared error

$$\frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2 \\ \frac{1}{N} \sum_{n=1}^{N} |y_n - \hat{y}_n|$$

- mean absolute error

Regression: Evaluation Metrics

https://scikit-learn.org/stable/modules/model_evaluation.html

Regression

'explained_variance'	metrics.explained_variance_score
'neg_mean_absolute_error'	metrics.mean_absolute_error
'neg_mean_squared_error'	metrics.mean_squared_error
'neg_mean_squared_log_error'	<pre>metrics.mean_squared_log_error</pre>
'neg_median_absolute_error'	metrics.median_absolute_error
'r2'	metrics.r2_score

Linear Regression

Parameters:

weight vector $w = [w_1, w_2, \dots w_f \dots w_F]$ bias scalar b

Prediction:

$$\hat{y}(x_i) \triangleq \sum_{f=1}^F w_f x_{if} + b$$

Training:

find weights and bias that minimize error

Linear Regression predictions as a function of one feature are **linear**

Linear Regression: Training

Goal:

Want to find the weight coefficients w and intercept/bias b that minimizing the mean squared error on the N training examples

Optimization problem: "Least Squares" $\min_{w,b} \sum_{n=1}^{N} \left(y_n - \hat{y}(x_n, w, b) \right)^2$

Linear Regression: Training

Optimization problem: "Least Squares"

$$\min_{w,b} \sum_{n=1}^{N} \left(y_n - \hat{y}(x_n, w, b) \right)^2$$

 $\hat{x}_{n} = 1$ An exact solution for optimal values of w, b exists! $\tilde{X} = \begin{bmatrix} x_{11} \dots x_{1F} & 1 \\ x_{21} \dots & x_{2F} & 1 \\ & & & \\ x_{N1} \dots & x_{NF} & 1 \end{bmatrix}$

$$[w_1 \dots w_F \ b]^T = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T y$$

We will cover and derive this in next class

Nearest Neighbor Regression

Parameters:

none

Prediction:

find "nearest" training vector to given input *x*predict *y* value of this neighbor

Training:

none needed (use training data as lookup table)

K nearest neighbor regression

Parameters:

K : number of neighbors

Prediction:

- find K "nearest" training vectors to input x- predict **average** y of this neighborhood

Training:

none needed (use training data as lookup table)

Nearest Neighbor predictions as a function of one feature are **piecewise constant**

Mike Hughes - Tufts COMP 135 - Spring 2019

Distance metrics

• Euclidean $\operatorname{dist}(x, x') = \sqrt{\sum_{f=1}^{F} (x_f - x'_f)^2}$

• Manhattan dist
$$(x, x') = \sum_{f=1}^{F} |x_f - x'_f|$$

• Many others are possible

Error vs Model Complexity

k - Number of Nearest Neighbors

Credit:

Fig 2.4

ESL textbook

Mike Hughes - Tufts COMP 135 - Spring 2019

Summary of Methods

	Function class flexibility	Knobs to tune	How to interpret?
Linear Regression	Linear	Penalize weights (more next week)	Inspect weights
K Nearest Neighbors Regression	Piecewise constant	Number of Neighbors Distance metric	Inspect neighbors

Objectives for Today (day 02)

- Understand 3 steps of a regression task
 - Training
 - Prediction
 - Evaluation
 - Mean Squared Error
 - Mean Absolute Error

- Chosen performance metric should be integrated at training
- Mean squared error is "easy", but not always the right thing to do

- Try two methods (focus: prediction and evaluation)
 - Linear Regression
 - K-Nearest Neighbors

Breakout!

Lab for day02