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Linear Regression

15

v

10

........................

Many slides attributable to: .
Erik Sudderth (UCD Prof. Mike Hughes

Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)


https://www.cs.tufts.edu/comp/135/2019s/

Objectives for Today (day 03)

 Training “least squares” linear regression
« Simplest case: 1-dim. features without intercept
« Simple case: 1-dim. features with intercept
* General case: Many features with intercept

 Concepts (algebraic and graphical view)
* Where do formulas come from?
* When are optimal solutions unique?

e Programming;:
« How to solve linear systems in Python
* Hint: use np.linalg.solve; avoid np.linalg.inv



What will we learn?
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Task: Regression
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Visualizing errors

Error or “residual”
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Prediction g




Evaluation Metrics for Regression
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Today, we’ll focus on mean squared error (MSE). Mean squared error is smooth everywhere.
Good analytical properties and widely studied. Thus, it is a common choice.

NB: Many applications, absolute error (or other error metrics) may be more suitable, if computational
or analytical convenience was not the chief concern.



Linear Regression
1-dim features, no bias

Parameters: G eptaton kLo it ope
weight scalar U w=10
Prediction:
) é B w=0.5
y(a;x,,) — W * X41
| w=0.0
Training;

Input: training set of N observed examples of features x and responses y
Output: value of w that minimizes mean squared error on training set.



Training for 1-dim, no-bias LR
Training objective:N minimize squared error (“least squares” estimation)

: A 2
min n_l(yn Y(zp,w))

Formula for parameters that minimize the objective:

N
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When can you use this formula?
When you observe at least 1 example with non-zero features
Otherwise, all possible w values will be perfect (zero training error)
Why? all lines in our hypothesis space go through origin.

How to derive the formula (see notes):
1. Compute gradient of objective, as a function of w
2. Set gradient equal to zero and solve for w



For details, see derivation notes

https://www.cs.tufts.edu/comp/135/20201f/note
s/dayo3_linear regression.pdf
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Linear Regression
1-dim features, with bias

. Graphical interpretation:
Parameters * Predict along line with slope w and intercept b
weight scalar U Wz 01.8
bias scalar b
Prediction: S N |
, Lo b=06

A A
y(x;)) =w-x;1 +b =
Training.

Input: training set of N observed examples of features x and responses y
Output: values of w and b that minimize mean squared error on training set.



Training for 1-dim, with-bias LR

Training objective: minimize squared error (“least squares” estimation)

N
. n_A n; 7b ’
Lin ;(y (0, w, b))

Formula for parameters that minimize the objective:
N _ _
. Zn:1($n —Z)(Yn — V) _
w = N > T = mean(xy,...TN)
anl (mn — 37) y = mean(y1,...Yyn)

b=1y— wx

When can you use this formula?
When you observe at least 2 examples with distinct 1-dim. features
Otherwise, many w, b will be perfect (lowest possible training error)
Why? many lines in our hypothesis space go through one point

How to derive the formula (see notes):
1. Compute gradient of objective wrt w, as a function of w and b
2. Compute gradient of objective wrt b, as a function of wand b
3. Set (1) and (2) equal to zero and solve for w and b (2 equations, 2 unknowns)



Linear Regression
F-dim features, with bias

Graphical interpretation:

Parameters . Predict along one plane in F+1-dim. space
weight vector W = [wW1, W, ... WF] '

bias scalar |

Prediction:

X1

’ p— ]_ FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation

° °
I ralnlng (shown in red) and the plane.

Input: training set of N observed examples of features x and responses y
Output: values of w and b that minimize mean squared error on training set.



Training for F-dim, with-bias LR

Training objective: minimize squared error (“least squares” estimation)

N
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Formula for parameters that minimize the objective:

[w1 o WER b]T = (XTX)_lXTy
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When can you use this formula? -
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When you observe at least F+1 examples that are linearly independent
Otherwise, infinitely many w, b will yield lowest possible training error

How to derive the formula (see notes):

1. Compute gradient of objective wrt each entry of w, and wrt scalar b (F+1 total expressions)
2. Set all gradients equal to zero and solve for w and b (F+1 equations, F+1 unknowns)



More compact notation

0=bw wy...wg]

Tn =11 2p1 Tna...TnF]



Visualizing the cost function

“Level set” contours : all points
with same function value



Breakout!

* Do the dayog lab!

 Ask questions in Live Q&A on Piazza



