Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Linear Regression

Many slides attributable to: Erik Sudderth (UCI) Finale Doshi-Velez (Harvard)

Prof. Mike Hughes

James, Witten, Hastie, Tibshirani (ISL/ESL books)

Objectives for Today (day 03)

- Training "least squares" linear regression
 - Simplest case: 1-dim. features without intercept
 - Simple case: 1-dim. features with intercept
 - General case: Many features with intercept
- Concepts (algebraic and graphical view)
 - Where do formulas come from?
 - When are optimal solutions unique?
- Programming:
 - How to solve linear systems in Python
 - Hint: use **np.linalg.solve**; avoid **np.linalg.inv**

What will we learn?

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Task: Regression

Supervised Learning

regression

Unsupervised Learning

Reinforcement Learning y is a numeric variable e.g. sales in \$\$

Visualizing errors

Evaluation Metrics for Regression

• mean squared error
$$\frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$

mean absolute error

$$\frac{1}{N} \sum_{n=1}^{N} |y_n - \hat{y}_n|$$

Today, we'll focus on mean squared error (MSE). Mean squared error is **smooth everywhere**. Good analytical properties and widely studied. Thus, it is a common choice.

NB: Many applications, absolute error (or other error metrics) may be more suitable, if computational or analytical convenience was not the chief concern.

Linear Regression 1-dim features, no bias

Parameters:

weight scalar $\,w\,$

Prediction:

$$\hat{y}(x_i) \triangleq w \cdot x_{i1}$$

Graphical interpretation: Pick a line with slope w that goes through the origin

Training:

Input: training set of N observed examples of features *x* and responses *y Output*: value of *w* that minimizes **mean squared error** on training set.

Training for 1-dim, no-bias LR

Training objective: minimize squared error ("least squares" estimation)

$$\min_{w \in \mathbb{R}} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, w))^2$$

Formula for parameters that minimize the objective:

$$w^* = \frac{\sum_{n=1}^{N} y_n x_n}{\sum_{n=1}^{N} x_n^2}$$

When can you use this formula?

When you observe **at least 1** example with **non-zero** features Otherwise, *all possible w values* will be perfect (zero training error) Why? all lines in our hypothesis space go through origin.

How to derive the formula (see notes):

- 1. Compute gradient of objective, as a function of w
- 2. Set gradient equal to zero and solve for w

For details, see derivation notes

https://www.cs.tufts.edu/comp/135/2020f/notes/day03_linear_regression.pdf

Linear Regression 1-dim features, with bias

Parameters:

bias scalar b

Prediction:

$$\hat{y}(x_i) \triangleq w \cdot x_{i1} + b$$

Graphical interpretation:

Predict along line with slope w and intercept b

Training:

Input: training set of N observed examples of features *x* and responses *y Output*: values of *w* and *b* that minimize **mean squared error** on training set.

Training for 1-dim, with-bias LR

Training objective: minimize squared error ("least squares" estimation)

$$\min_{w \in \mathbb{R}, b \in \mathbb{R}} \quad \sum_{n=1}^{N} (y_n - \hat{y}(x_n, w, b))^2$$

Formula for parameters that minimize the objective:

$$w = \frac{\sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})}{\sum_{n=1}^{N} (x_n - \bar{x})^2}$$

$$\bar{x} = \text{mean}(x_1, \dots x_N)$$

$$\bar{y} = \text{mean}(y_1, \dots y_N)$$

$$b = \bar{y} - w\bar{x}$$

When can you use this formula?

When you observe at least 2 examples with distinct 1-dim. features Otherwise, many w, b will be perfect (lowest possible training error)

Why? many lines in our hypothesis space go through one point

How to derive the formula (see notes):

- 1. Compute gradient of objective wrt w, as a function of w and b
- 2. Compute gradient of objective wrt b, as a function of w and b
- 3. Set (1) and (2) equal to zero and solve for w and b (2 equations, 2 unknowns)

Linear Regression F-dim features, with bias

Parameters:

weight vector
$$w = [w_1, w_2, \dots w_F]$$

bias scalar b

Prediction:

$$\hat{y}(x_i) \triangleq \sum_{f=1}^{F} w_f x_{if} + b$$

Training:

Input: training set of N observed examples of features *x* and responses *y Output*: values of *w* and *b* that minimize **mean squared error** on training set.

Graphical interpretation: $Predict\ along\ one\ plane\ in\ F+1-dim.\ space$

FIGURE 3.4. In a three-dimensional setting, with two predictors and one response, the least squares regression line becomes a plane. The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the plane.

Training for F-dim, with-bias LR

Training objective: minimize squared error ("least squares" estimation)

$$\min_{w \in \mathbb{R}^F, b \in \mathbb{R}} \quad \sum_{n=1}^N \left(y_n - \hat{y}(x_n, w, b) \right)^2$$

Formula for parameters that minimize the objective:

$$[w_{1} \dots w_{F} \ b]^{T} = (\tilde{X}^{T} \tilde{X})^{-1} \tilde{X}^{T} y$$

$$\tilde{X} = \begin{bmatrix} x_{11} \dots x_{1F} & 1 \\ x_{21} \dots x_{2F} & 1 \\ & \dots & \\ x_{N1} \dots x_{NF} & 1 \end{bmatrix} y = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}$$

When can you use this formula?

When you observe **at least F+1** examples that are linearly independent Otherwise, *infinitely many w*, b will yield lowest possible training error

How to derive the formula (see notes):

- 1. Compute gradient of objective wrt each entry of w, and wrt scalar b (F+1 total expressions)
- 2. Set all gradients equal to zero and solve for w and b (F+1 equations, F+1 unknowns)

More compact notation

$$\theta = [b \ w_1 \ w_2 \dots w_F]$$

$$\tilde{x}_n = [1 \ x_{n1} \ x_{n2} \dots x_{nF}]$$

$$\hat{y}(x_n, \theta) = \theta^T \tilde{x}_n$$

$$J(\theta) \triangleq \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2$$

Visualizing the cost function

Breakout!

• Do the dayo3 lab!

• Ask questions in Live Q&A on Piazza