## Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2020f/

# Stochastic Gradient Descent







Many slides attributable to: Erik Sudderth (UCI), Emily Fox (UW), Finale Doshi-Velez (Harvard)

Prof. Mike Hughes

James, Witten, Hastie, Tibshirani (ISL/ESL books)

# Objectives Today (day 12) Stochastic Gradient Descent

- Review: Gradient Descent
  - Repeatedly step downhill until converged
- Review: Training Neural Nets with Backprop
  - Backprop = chain rule plus dynamic programming
- L-BFGS: How to step in better direction?
- Stochastic Gradient Descent : How to go fast?

### Review: Gradient Descent in 1D

**input:** initial  $\theta \in \mathbb{R}$ 

input: step size  $\alpha \in \mathbb{R}_+$ 

while not converged:

$$\theta \leftarrow \theta - \alpha \frac{d}{d\theta} J(\theta)$$



Q: Which direction to step?

A: Straight downhill

(steepest descent at current location)

Q: How far to step in that direction?

**A:** 
$$\alpha \cdot \left| \left| \frac{\partial}{\partial \theta} J \right| \right|$$

Step size parameter picked in advance, unaware of current location

### Review: Gradient Descent in 2D+

**input:** initial  $\theta \in \mathbb{R}^{D}$ 

input: step size  $\alpha \in \mathbb{R}_+$ 

while not converged:

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$$



Q: Which direction to step?

A: Straight downhill

(steepest descent at current location)

Q: How far to step in that direction?

A: 
$$\alpha \cdot ||\nabla_{\theta}J(\theta)||$$

Step size parameter picked in advance, unaware of current location

## Review: Step size matters

Even in one dimension, tough to select step size.



#### Recommendations

- Try multiple values
- Might need different sizes at different locations

# Review: Neural Net as computational graph

2 directions of propagation

Forward: compute loss

Backward: compute grad



## Review: Training Neural Nets

#### **Training Objective:**

$$\min_{w} \sum_{n=1}^{N} E(y_n, \hat{y}(x_n, w))$$

#### **Gradient Descent Algorithm:**

```
w = initialize_weights_at_random_guess(random_state=0)
while not converged:
    total_grad_wrt_w = zeros_like(w)
    for n in 1, 2, ... N:
        loss[n], grad_wrt_w[n] = forward_and_backward_prop(x[n], y[n], w)
        total_grad_wrt_w += grad_wrt_w[n]

w = w - alpha * total_grad_wrt_w

w_{ij} = w_{ij} - \alpha \frac{dE}{dw_{ij}}
```

How to pick step size reliably? How to go fast on big datasets?

## Step size strategy: Slow decay

input: initial  $\theta \in \mathbb{R}$ 

**input:** initial step size  $\alpha_0 \in \mathbb{R}_+$ 

while not converged:

$$\theta \leftarrow \theta - \alpha_t \nabla_{\theta} J(\theta)$$

$$\alpha_t \leftarrow \operatorname{decay}(\alpha_0, t)$$

*t* : number of steps

$$t \leftarrow t + 1$$

Linear decay

$$\frac{\alpha_0}{kt}$$

**Exponential decay** 

$$\alpha_0 e^{-kt}$$

Often helpful, requires tuning and hard to get right!

# Q: How far to step? A: Line search Find good step size for current location

Goal: 
$$\min_{x} f(x)$$

Step Direction: 
$$\Delta x = -\nabla_x f(x)$$



Possible step lengths

Search for the best scalar  $s \ge 0$ , such that:

$$s^* = \arg\min_{s>0} f(x + s\Delta x)$$

In Python code: scipy.optimize.line\_search

Can be expensive, but often worth it

#### Q: Better direction to step than straight downhill?

#### A: Yes. Modify direction using **second-order derivative**.



A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information (i.e. the second derivative) to take a more direct route.

 $\min_{\theta} J(\theta)$ 

1<sup>st</sup> order only decent direction Using 2<sup>nd</sup> order Newton descent direction

$$\Delta heta = -J'( heta)$$

$$\Delta \theta = -J'(\theta)$$
  $\Delta \theta = -\frac{1}{J''(\theta)}J'(\theta)$ 

2-D+ 
$$\Delta \theta = -\nabla_{\theta} J(\theta)$$
  $\Delta \theta = -\frac{H(\theta)^{-1}}{\nabla_{\theta} J(\theta)}$ 

Hessian matrix for J H is a D x D matrix All second-order partial derivatives

#### L-BFGS: Smarter Gradient Descent

scipy.optimize.fmin\_l\_bfgs\_b

 $L ext{-}BFGS$ : Limited Memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Approximate second order method

- Computes first-order gradient vector exactly on provided training dataset
- Computes efficient approximation of Hessian via recent history of steps



Q: Which direction to step?

A: Downhill, adjusted by curvature at current location

Q: How far to step in that direction?

A: Efficient line search
Step size adjusted to current location
(as implemented in SciPy)

# Objectives Today (day 12) Stochastic Gradient Descent

- Review: Gradient Descent
  - Repeatedly step downhill until converged
- Review: Training Neural Nets with Backprop
  - Backprop = chain rule plus dynamic programming
- L-BFGS: How to step in better direction?
- Stochastic Gradient Descent : How to go **fast**?

### Stochastic Estimate of Loss Function

• Standard "full-dataset" objective

$$\mathcal{L}(w) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(x_n, y_n, w)$$

Rewrite as an "expected value"

$$\mathcal{L}(w) = \mathbb{E}_{x_i, y_i \sim \text{Unif}(\{x_n, y_n\}_{n=1}^N)} \left[ \mathcal{L}_i(x_i, y_i, w) \right]$$

Empirical distribution over our N training examples

Each index *i* selected with probability 1/N

### Stochastic Estimate of Loss Function

• Standard "full-dataset" objective

$$\mathcal{L}(w) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(x_n, y_n, w)$$

Rewrite as an "expected value"

$$\mathcal{L}(w) = \mathbb{E}_{x_i, y_i \sim \text{Unif}(\{x_n, y_n\}_{n=1}^N)} \left[ \mathcal{L}_i(x_i, y_i, w) \right]$$

Approximate with one randomly-drawn sample

$$\mathcal{L}(w) \approx \mathcal{L}_i(x_i, y_i, w)$$
  $x_i, y_i \sim \text{Unif}(\{x_n, y_n\}_{n=1}^N)$ 
Each index *i* selected with probability 1/N

### Stochastic Estimate of Gradient

• Standard "full-dataset" gradient

$$\nabla_w \mathcal{L}(w) = \frac{1}{N} \sum_{n=1}^N \nabla_w \mathcal{L}_n(x_n, y_n, w)$$

· Approximate with one randomly-drawn sample

$$\nabla_w \mathcal{L}(w) \approx \nabla_w \mathcal{L}_i(x_i, y_i, w)$$
  $x_i, y_i \sim \text{Unif}(\{x_n, y_n\}_{n=1}^N)$ 

Each index *i* selected with probability 1/N

## Gradient Descent using Noisy Estimates of the "True" Gradient



#### **Intuition**

As long as each noisy step takes us in a **direction that is correct on average**, we will over many steps make progress in minimizing the loss.

#### Formal quarantees

Our Monte Carlo estimate of gradient is unbiased, so its expected value is exactly equal to the true whole-dataset gradient

# Stochastic gradient descent (SGD) using one example at a time

input: initial  $w \in \mathbb{R}$ 

input: step size  $\alpha \in \mathbb{R}_+$ 

while not converged:

$$\{x_i, y_i\} \sim \text{Unif}(\{x_n, y_n\}_{n=1}^N)$$

$$w \leftarrow w - \alpha \nabla_w \mathcal{L}(x_i, y_i, w)$$

Should we only use one example *i* to estimate gradient?

### SGD with minibatches of size B

input: initial  $w \in \mathbb{R}$ 

input: step size  $\alpha \in \mathbb{R}_+$ 

while not converged:

$$\{x_b, y_b\}_{b=1}^B \sim \text{Unif}(\{x_n, y_n\}_{n=1}^N, \text{ size} = B, \text{ replace} = \text{False})$$

$$w \leftarrow w - \alpha \cdot \frac{1}{B} \sum_{i=1}^B \nabla_w \mathcal{L}(x_i, y_i, w)$$

B = 1 recovers previous slide. B = N recovers standard GD. In between: **trade off** *quality of estimate* with *cost of estimate* 

# Objectives Today (day 12) Stochastic Gradient Descent

- Review: Gradient Descent
  - Repeatedly step downhill until converged
- Review: Training Neural Nets with Backprop
  - Backprop = chain rule plus dynamic programming
- Line Search: How to take step of good size?
- L-BFGS: How to step in better direction?
- Stochastic Gradient Descent : How to go fast?

### Breakout to Lab

#### Warning: Notation can be confusing

- Alpha in these slides refers to step size (aka learning rate)
- In sklearn's MLPClassifier, alpha refers to a different hyperparameter: the scalar strength of a small L2 penalty on the magnitudes of the weights
- To set step size in sklearn:

```
learning_rate_init=0.5
```