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Objectives Today (day 12)
Stochastic Gradient Descent

« Review: Gradient Descent
» Repeatedly step downhill until converged

« Review: Training Neural Nets with Backprop
» Backprop = chain rule plus dynamic programming

* L-BFGS : How to step in better direction?
 Stochastic Gradient Descent : How to go fast?



Review: Gradient Descent 1n 1D

input: initial § € R
input: step size a € R,
while not converged:

d
0—0—a—J(0
— adéj()

Q: Which direction to step?

A: Straight downbhill
(steepest descent at current location)

Q: How far to step in that direction?
0
a0
Step size parameter picked in advance,

unaware of current location

A: Q- J




Review: Gradient Descent in 2D+

gradient = vector of

. o e D
input: initial § € R Got partial derivatives
input: step size o € R Vo I(6) = { o4 ]
‘ 901
while not converged:
0 60— aVyJ(0)

»91
Q: Which direction to step? Q: How far to step in that direction?
A: Straight downhill Ar Qe Hve J (9 ) H

(steepest descent at current location)
Step size parameter picked in advance,

unaware of current location



Review: Step size matters

Even in one dimension, tough to select step size.

f) fe | /

x” x x° x
Too small: converge Too big: overshoot and
very slowly even diverge
Recommendations
- Try multiple values

- Might need different sizes at different locations



Review: Neural Net as ¢
computational graph

2 directions of propagation

Forward: compute loss
Backward: compute grad

Xinput



Review: Training Neural Nets

Training Objective:

N
min ) E(Yn, §(2n, w))

n=1

Gradient Descent Algorithm:

w = initialize weights at random guess (random state=0)
while not converged:
total grad wrt w = zeros like(w)

for n in 1, 2, .. N:
loss[n], grad wrt w[n] = forward and backward prop(x[n], y[n], w)
total grad wrt w += grad wrt w[n]
w = w — alpha * total grad wrt w W:: = W;;: — a—dE
1] ] dw .
1]

How to pick step size reliably? How to go fast on big datasets?



Step size strategy: Slow decay
input: initial 0 € R

input: initial step size age Ry

while not converged: Li“‘(’;“' decay
0
0 < 0 —OétVQJ(@) pm
Uy <— deCay(Oé()7 t) Exponential decay
—kt
t : number of steps t Y t _|_ 1 0(06

Often helpful, requires tuning and hard to get right!



Q: How far to step? A: Line search
Find good step size for current location

Goal:  min f(x)
£z
St
Diigction: Ax = —fo(il?)

® s=5.1
Possible step lengths

Search for the best scalar s >= 0, such that:

s* = arg m>1](f)1f(x + sAx)

In Python code: scipy.optimize.line_search

Can be expensive, but often worth it



Q: Better direction to step than straight downhill?

A: Yes. Modify direction using second-order derivative.

Xo

A comparison of gradient descent &
(green) and Newton's method (red) for
minimizing a function (with small step
sizes). Newton's method uses
curvature information (i.e. the second
derivative) to take a more direct route.

1-D

2Dr A = —Vy.J(0)

m@in J(6)

15t order only
decent direction

AO = —J'(6)

Using 2" order Newton
descent direction

1
AO = —
H J//(H)

J'(0)

AG =—H(0) 'VeJ(8)

Hessian matrix for J
H is a D x D matrix
All second-order partial derivatives



[.-BFGS: Smarter Gradient Descent

scipy.optimize.fmin_|_bfgs_b

L' BFGS . Limited Memory Brovden—Fletcher—Goldfarb—Shanno (BFGS)

Approximate second order method
« Computes first-order gradient vector exactly on provided training dataset
« Computes efficient approximation of Hessian via recent history of steps

Xo

Q: Which direction to step? Q: How far to step in that direction?
A: Downhill, adjusted by A: Efficient line search
curvature at current location Step size adjusted to current location

(as implemented in SciPy)


https://en.wikipedia.org/wiki/BFGS_method

Objectives Today (day 12)
Stochastic Gradient Descent

 Stochastic Gradient Descent : How to go fast?



Stochastic Estimate of Loss Function

 Standard “full-dataset” objective

N
1
n=1

« Rewrite as an “expected value”

[’(w) — Exi,yiNUnif({xn,yn}gzl) [EZ (ajiv Yis UJ)]

Empirical distribution over
our N training examples

Each index i selected with probability 1/N



Stochastic Estimate of Loss Function

 Standard “full-dataset” objective

N
1
n=1

« Rewrite as an “expected value”
[’(w) — Exi,yiNUnif({xn,yn}gzl) [L:Z (ajiv Yis UJ)]
» Approximate with one randomly-drawn sample

L(w) = Li(ziyisw) @iy ~ Unif({@n, Yntn_1)

Each index 1 selected with probability 1/N



Stochastic Estimate of Gradient

 Standard “full-dataset” gradient

N
1 Z
n=1

« Approximate with one randomly-drawn sample
vwﬁ(w) ~ vw»cz (mia Yi, w) LiyYi ™~ Unlf({xna yn}?];f:1)

Each index 1 selected with probability 1/N



Gradient Descent using Noisy
Estimates of the “True” Gradient

Intuition

As long as each noisy step takes
us in a direction that is
correct on average, we will
over many steps make progress
in minimizing the loss.

Formal guarantees

Our Monte Carlo estimate of
gradient is unbiased, so its
expected value is exactly equal
to the true whole-dataset
gradient




Stochastic gradient descent (SGD)

using one example at a time
input: initial w € R
input: step size a € R
while not converged:

{xia yz} ™~ Unlf({xn7 Yn 7]7\,[:1)
w — w — oV, L(x;, Yi, w)

Should we only use one example i to estimate gradient?



SGD with minibatches of size B

input: initial w € R
input: step size a € R
while not converged:
{fEb,yb}éB:l ~ Unif({zn, yn}Y_,, size= B, replace = False)

B
1
wW<—w — o Eszﬁ(l’z‘,ymw)

1=1

B = 1 recovers previous slide. B = N recovers standard GD.
In between: trade off quality of estimate with cost of estimate



Objectives Today (day 12)
Stochastic Gradient Descent

« Review: Gradient Descent
» Repeatedly step downhill until converged

« Review: Training Neural Nets with Backprop
» Backprop = chain rule plus dynamic programming

 Line Search: How to take step of good size?
* L-BFGS : How to step in better direction?
 Stochastic Gradient Descent : How to go fast?



Breakout to Lab

Warning: Notation can be confusing

 Alpha in these slides refers to step size (aka
learning rate)

* In sklearn’s MLPClassifier, alpha refers to a
different hyperparameter: the scalar strength
of a small L2 penalty on the magnitudes of the
weights

* To set step size in sklearn:
learning rate 1nit=0.5



