
Neural Nets in Practice
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Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2020f/

Many slides attributable to:
Erik Sudderth (UCI), Emily Fox (UW),
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Prof. Mike Hughes

https://www.cs.tufts.edu/comp/135/2019s/


Objectives Today: (day 13)
NNs in Practice

• Multi-class classification with NNs
• Pros and cons of NNs
• Avoiding overfitting with NNs
• Hyperparameter selection
• Data augmentation
• Early stopping
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What will we learn?
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Task: Binary Classification



Multi-class Classification
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How to do this?



>>> yhat_N = model.predict(x_NF)
>>> yhat_N[:5]
[0, 0, 1, 0, 1]

Binary Prediction
Goal: Predict label (0 or 1) given features x

• Input:

• Output:

7Mike Hughes - Tufts COMP 135 - Fall 2020

xi , [xi1, xi2, . . . xif . . . xiF ]
Entries can be real-valued, or 
other numeric types (e.g. integer, 
binary)

Binary label (0 or 1)

“features”
“covariates”
“attributes”

“responses” or “labels”
yi 2 {0, 1}



>>> yproba_N2 = model.predict_proba(x_NF)
>>> yproba1_N = model.predict_proba(x_NF)[:,1]
>>> yproba1_N[:5]
[0.143, 0.432, 0.523, 0.003, 0.994]

Binary Proba. Prediction
Goal: Predict probability of label given features

• Input:

• Output:
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xi , [xi1, xi2, . . . xif . . . xiF ]
Entries can be real-valued, or 
other numeric types (e.g. integer, 
binary)

“features”
“covariates”
“attributes”

“probability”
p̂i , p(Yi = 1|xi) Value between 0 and 1

e.g. 0.001, 0.513, 0.987



>>> yhat_N = model.predict(x_NF)
>>> yhat_N[:6]
[0, 3, 1, 0, 0, 2]

Multi-class Prediction
Goal: Predict one of C classes given features x

• Input:

• Output:
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xi , [xi1, xi2, . . . xif . . . xiF ]
Entries can be real-valued, or 
other numeric types (e.g. integer, 
binary)

Integer label (0 or 1 or … or C-1 )

“features”
“covariates”
“attributes”

“responses” or “labels”
yi 2 {0, 1, 2, . . . C � 1}



>>> yproba_NC = model.predict_proba(x_NF)
>>> yproba_c_N = model.predict_proba(x_NF)[:,c]
>>> np.sum(yproba_NC, axis=1)
[1.0, 1.0, 1.0, 1.0]

Multi-class Proba. Prediction
Goal: Predict probability of each class given features
Input:

Output:
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xi , [xi1, xi2, . . . xif . . . xiF ]
Entries can be real-valued, or other 
numeric types (e.g. integer, binary)

“features”
“covariates”
“attributes”

“probability” Vector of C non-negative values, sums to one

p̂i , [p(Yi = 0|xi) p(Yi = 1|xi) . . . p(Yi = C � 1|xi)]



From Real Value to Probability
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sigmoid(z) =
1

1 + e�z

pr
ob

ab
ili

ty



From Vector of Reals 
to Vector of Probabilities
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zi = [zi1 zi2 . . . zic . . . ziC ]

p̂i =
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#

called the “softmax” function



Representing multi-class labels

Encode as length-C one hot binary vector
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Examples (assume C=4 labels)

class 0:   [1 0 0 0]
class 1:   [0 1 0 0]
class 2:   [0 0 1 0]
class 3:   [0 0 0 1]

yn 2 {0, 1, 2, . . . C � 1}
ȳn = [ȳn1 ȳn2 . . . ȳnc . . . ȳnC ]yn 2 {0, 1, 2, . . . C � 1}
ȳn = [ȳn1 ȳn2 . . . ȳnc . . . ȳnC ]



“Neuron” for Binary Prediction
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Linear function
with weights w

Logistic
sigmoid
activation
function

Credit: Emily Fox (UW)

Probability
of class 1

https://courses.cs.washington.edu/courses/cse416/18sp/slides/


Recall: Binary log loss
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log loss(y, p̂) = �y log p̂� (1� y) log(1� p̂)

error(y, ŷ) =

(
1 if y 6= ŷ

0 if y = ŷ

Plot assumes:

- True label is 1

- Threshold is 0.5

- Log base 2



Multi-class log loss

log loss(ȳn, p̂n) = �
CX

c=1

ȳnc log p̂nc
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Input: two vectors of length C
Output: scalar value (strictly non-negative)

Justifications carry over from the binary case:
- Interpret as upper bound on the error rate
- Interpret as cross entropy of multi-class discrete random variable
- Interpret as log likelihood of multi-class discrete random variable 



Each Layer Extracts
“Higher Level” Features 
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PROs                    CONs?
• Flexible models
• State-of-the-art 

success in many 
applications
• Object recognition
• Speech recognition
• Language models

• Open-source software
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Deep Neural Nets



Two kinds of optimization 
problem
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Convex
Only one global minimum
If GD converges, solution is best 
possible

Non-Convex
One or more local minimum
GD solution might be much worse 
than global minimum
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Convex
Only one global minimum
If GD converges, solution is best 
possible

Non-Convex
One or more local minimum
GD solution might be much worse 
than global minimum

Deep Neural Nets: 
Optimization is not convex

MLPs with 1+ hidden layers
Deep NNs in general

Linear regression
Logistic regression



PROs                    CONs
• Flexible models
• State-of-the-art success 

in many applications
• Object recognition
• Speech recognition
• Language models

• Open-source software

• Require lots of data
• Each run of SGD can 

take hours/days
• Optimization not easy

• Will it converge?
• Is local minimum good 

enough?
• Hard to extrapolate
• Many hyperparameters
• Will it overfit?
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Deep Neural Nets



Many hyperparameters for a 
Deep Neural Network (MLP)

• Num. layers
• Num. units / layer
• Activation function
• L2 penalty strength

• Learning rate
• Batch size
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Control model 
complexity

Optimization
quality/speed



Guidelines: complexity params
• Num. units / layer
• Start with similar to num. features
• Add more (log spaced) until serious overfitting

• Num. layers
• Start with 1
• Add more (+1 at a time) until serious overfitting

• L2 penalty strength scalar
• Try range of values (log spaced)

• Activation function
• ReLU for most problems is reasonable
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Grid Search
1) Choose candidate values of each hyperparameter

2) For each combination, assess its heldout score
• We need to choose in advance:

• Performance metric (e.g. AUROC, log loss, TPR at PPV > 0.98, etc.)
• What is most important for your task?

• Source of heldout data
• Fixed validation set : Faster, simpler
• Cross validation with K folds : Less noise, better use of all available data

3) Select the one single combination with best score
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Step size/learning rate

Number of hidden units



Grid Search
1) Choose candidate values of each hyperparameter

2) For each combination, assess its heldout score
• We need to choose in advance:

• Performance metric (e.g. AUROC, log loss, TPR at PPV > 0.98, etc.)
• What is most important for your task?

• Source of heldout data
• Fixed validation set : Faster, simpler
• Cross validation with K folds : Less noise, better use of all available data

3) Select the one single combination with best score

25Mike Hughes - Tufts COMP 135 - Spring 2019

Step size/learning rate

Number of hidden units

Each trial can be parallelized. Can do for numeric or discrete variables.
But, number of combinations to try can quickly grow infeasible



Random Search
1) Choose candidate distributions of each hyperparameter

2) For each of T samples, assess heldout score
• We need to choose in advance:

• Performance metric (e.g. AUROC, log loss, TPR at PPV > 0.98, etc.)
• What is most important for your task?

• Source of heldout data
• Fixed validation set : Faster, simpler
• Cross validation with K folds : Less noise, better use of all available data

3) Select the one single combination with best score
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Usually, for convenience, assume each independent



Random Search
1) Choose candidate distributions of each hyperparameter

2) For each of T samples, assess heldout score
• We need to choose in advance:

• Performance metric (e.g. AUROC, log loss, TPR at PPV > 0.98, etc.)
• What is most important for your task?

• Source of heldout data
• Fixed validation set : Faster, simpler
• Cross validation with K folds : Less noise, better use of all available data

3) Select the one single combination with best score
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Usually, for convenience, assume each independent

Each trial can be parallelized. Best for numeric values.
Benefits in coverage over grid search.  
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Random Search covers more of 
the parameter space

Credit: Bergstra & Bengio JMLR 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a


8 random trials beats 100 grid 
search trials on MNIST digits
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Grid search over 100 
configs

Credit: Bergstra & Bengio JMLR 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a


Hyperopt Toolbox
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https://www.youtube.com/watch?v=Mp1xnPfE4PY

https://github.com/hyperopt/hyperopt/wiki/FMin

https://www.youtube.com/watch?v=Mp1xnPfE4PY
https://github.com/hyperopt/hyperopt/wiki/FMin


31Mike Hughes - Tufts COMP 135 - Spring 2019

2012 ImageNet Challenge Winner
ImageNet challenge
1000 categories, 1.2 million images in training set

How to learn 60 million parameters 
from 1 million examples?



NN Tricks to avoid overfitting

•Gather more data
•Data augmentation

•Modify optimization
•Early stopping
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Data Augmentation:
Gather more (artificial) data

33Mike Hughes - Tufts COMP 135 - Spring 2019

Credit: Bharath Raj (medium.com post)

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced


Data Augmentation
Data Augmentation: Increase effective size of 
training dataset by applying perturbations to 
existing features x to create new (x’, y) pairs

Choose perturbations which do not change label.

34

Images
• Flip left-to-right
• Slight rotations or crops
• Recolor or brighten

Text
• Add slight misspellings
• Replace word with similar 

word

from AlexNet paper (Krizhevsky et al. NIPS 2012)
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Credit: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping

Big idea: stop training after your heldout validation set stops improving
• Avoid overfitting
• Save time / compute resources

Early Stopping

Performance Metric

(assume higher is better)

Could be accuracy,
area under ROC,
Recall, precision,
whatever you care about 

Performance on  
Validation Set

Performance on Training Set

https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping


Objectives Today: (day 13)
NNs in Practice

• Multi-class classification with NNs
• Pros and cons of NNs
• Avoiding overfitting with NNs
• Hyperparameter selection
• Data augmentation
• Early stopping
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