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Decision Trees
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Objectives for day 14
Decision Trees

 Decision Tree Regression
« How to predict

* How to train
 Greedy recursive algorithm

e Possible cost functions

* Decision Tree Classification
e Possible cost functions
» Comparisons to other methods
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Task: Regression

Supervised 1s a numeric variable
- y e.g. salesin $$

Learning

regression




Salary prediction for Hitters data

A data frame with 322 observations of major league players on the following variables.

AtBat

Number of times at bat in 1986
Hits

Number of hits in 1986
HmRun

Number of home runs in 1986
Runs

Number of runs in 1986
RBI

Number of runs batted in in 1986
Walks

Number of walks in 1986
Years

Number of years in the major leagues



Salary Prediction by “Region”
Divide x space into regions, predict constant within each region
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From Regions to Decision Tree
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Decision tree regression

Classification and Regression Trees by Breiman et al (1984)
Parameters:
- tree architecture (list of nodes, list of parent-child pairs)
- at each internal node: x variable id and threshold value
- at each leaf: scalar y value to predict
Hyperparameters
- max_depth, min_samples_ split
Prediction procedure:
- Determine which leaf (region) the input features belong to
- Guess the y value associated with that leaf
Training procedure:
- minimize error on training set

- use greedy heuristics (build from root to leaf)



Ideal Training for Decision Tree
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Search space is too big (so many regions)! Hard to solve exactly...
... let’s break it down into subproblems



Key subproblem: Within 1 region,
how to find best binary split?

Given a big region R, find the best possible binary split into two
subregions (best means minimize mean squared error)

Ry(j,s) ={X|X,; <s} and Ry(j,s) ={X|X; > s}

min > wi—ie) Y (Ui —iay)’

j,Sa@Rl 7:’;R2 it 2 €R1(7,s) i: T;€R2(j,s)

We can solve this subproblem efficiently!
For each feature indexjin 1, 2, ... F:
- find its best possible cut point s[j] and its cost[j]
j <- argmin( cost[1] ... cost[F] )
return best index j and its cut point s[j]

Let binary split denote this procedure



Greedy top-down training

. . . . Hyperparameters controling complexity
Training 1s a recursive process.

Returns a tree (by reference to its root node)

def train tree greedy(x NF, y N, depth d):

if d >= :
return LeafNode(x NF, y N)
elif N <
return LeafNode(x NF, y N)
else:
# J : integer index indicating feature to split
# s real value used as threshold to split

# L / R : number of examples in left / right region
J, s, x LF, x RF, y L, y R = binary split(x NF, y N)
if no sElit possible:
return LeafNode (x NF, y N)
left child = train_treg_greeay (x LF, y L, d+1)
right child = train tree greedy(x RF, y R, d+1)
return InternalNode (x NF, y N, J, s, left child, right child)



Greedy Tree for Hitters Data

Years < 4.5
1
RBI ¢ 60.5 Hits <|117.5
Putoqu < 82 Years|< 3.5
| Years|< 3.5
5.487 | | 5304  6.180
4622 5183
Walks|< 43.5 Walks (< 52.5
Runs  47.5 | RBI 4 805
| | 6.407 6.540 Years|< 6.5 |
6.0156  5.571 ' 7280

6.450 7.007



Cost functions for regression trees

* Mean squared error
« Assumed on previous slides, very common
« How to solve for region’s best guess?

Optimal solution:

mlﬂ Z (y,z; — 31)2 Guess mean output value of the region:
'gRl : i: T;€R1(7,8) . 1 Z
IR = -
1. 1;ER

* Mean absolute error
* Possible! (supported in sklearn)
« How to solve for region’s best guess?

Optimal solution:
Guess median output value of the region:

yr = median({y; : ©; € R})



Task: Binary Classification

Supervised y is a binary variable
. (red or blue)
Learning
binary
classification
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Decision Tree Classifier

Goal: Does patient have heart disease?
Ca 4 0.5

MaxHR|< 161.5 ChestPain:bc

No No

No Yes

Leaves make binary predictions!



Decision Tree Probabilistic

Classifier
Goal: What probability does patient have heart disease?
Ca 4 0.5
MaxHR|< 161.5 ChestRain:bc
05 0667
0.25 0.80

Leaves count samples in each class! Then return fractions!



Decision Tree Classifier

Classification and Regression Trees by Breiman et al (1984)

Parameters:

- tree architecture (list of nodes, list of parent-child pairs)

- at each internal node: x variable id and threshold

- at each leaf: number of examples in each class
Hyperparameters:

- max_depth, min_samples_ split
Prediction:

- identify rectangular region for input x

- predict: most common label value in region

- predict proba: fraction of each label in region
Training:

- minimize cost on training set

- greedy construction from root to leaf



Cost functions for classification trees

criterion : {“gini”, “entropy”}, default="gini"”
The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and
"entropy” for the information gain.

 Information gain or “entropy”

* Cost for a region with N examples of C classes

1
COSt(ajl Nale ch log pe, Pc = Nzéc(yn)
 GInl impurity

cost(z1.n, Y1:N) ch



Advantages of Decision Trees

Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

Trees can easily handle qualitative predictors without the need to
create dummy variables.

+ Can handle heterogeneous datasets (some features are numerical, some are categorical)
easily without requiring standardized scales like penalized linear models do

+ Flexible non-linear decision boundaries

+ Relatively few hyperparameters to select



Limitations of Decision Trees

V¥ Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches

seen in this book. Axis-aligned assumption not always a good idea

V¥ Additionally, trees can be very non-robust. In other words, a small
change in the data can cause a large change in the final estimated
tree.



Summary of Classifiers

Knobs to tune

Function
class

Interpret?

Logistic
Regression

MLPClassifier

K Nearest
Neighbors
Classifier

Decision
Tree
Classifier

L2/L1 penalty on
weights

L2/L1 penalty on weights

Num layers, num units
Activation functions

GD method: SGD or LBFGS or ...
Step size, batch size

Number of Neighbors

Max. depth
Min. leaf size

flexibility

Linear

Universal
(with
enough
units)

Inspect
weights

Challenging

Inspect
tree



