Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2020f/

Random Forests

and other Ensembles of Independent Predictors

|

/a
§

.
N

S

w

' i".x
‘ | front .

depth image =% body parts == 3D joint proposals

Prof. Mike Hughes

Many slides attributable to:

Liping Liu and Roni Khardon (Tufts)
T. Q. Chen (UW),

James, Witten, Hastie, Tibshirani (ISL/ESL books)

https://www.cs.tufts.edu/comp/135/2019s/

Ensembles: Unit Objectives

Big idea: We can improve performance by
aggregating decisions from MANY predictors

» Today: Predictors are Independently Trained
 Using bootstrap samples of examples: “Bagging”
 Using random subsets of features
« Exemplary method: Random Forest / ExtraTrees

* Next class: Predictors are Sequentially Trained
 Each successive predictor “boosts” performance
« Exemplary method: XGBoost

Motivating Example

3 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

Motivating Example

5 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

Motivating Example

101 binary classifiers
Model predictions as independent random variables
Each one is correct 70% of the time

What is chance that majority vote is correct?

Key Idea: Diversity

 Vary the training data

Bootstrap Sampling

Obs | X Y
3 |53 |28 .
» O
1 43 |24
3 53 |28
Obs 1X Y Obs | X Y
1 43 |24 21 |11 A%
51 |11 53 |28 .a
3 Tos L_[a3 [24 ;
1 f
Original Data (Z) :
Obs [X |Y N
o
2.1 |11
2.1 |11
1 43 (24

FIGURE 5.11. A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. FEach bootstrap data set contains n obser-
vations, sampled with replacement from the original data set. Each bootstrap data

set 18 used to obtain an estimate of c.

Bootstrap Sampling in Python

def bootstrap_sample(x_NF, random_state=np.random):
N = x_NF.shape[2]
row_ids = random_state.choice(np.arange(N), size=N, replace=True)
return X_NF[row_ids].copy()

In [9]: x_NF In [11]: bootstrap_sample(x_NF)
Out[9]: Out[11]:
array([[4.3, array([[5.3, 2.8],

[4.3
[2.1
[5.3

bl |

-
NHN
ODI—'b
. st s

’ [5.3
’ [5.3, 2.8],
1) [5.3, 2.8]])

In [12]: bootstrap_sample(x_NF) In [12]: bootstrap_sample(x_NF)
Out[10]: Out[12]:

array([] array([[5.3, 2.8],
] [5.3, 2.8],
] [4.3, 2.4]])

[2.1,
[2.1
[2.1

L |

-

1
1.
1

e
rd ™ -

)

Bootstrap Aggregation: BAgg-ing

* Draw B “replicas” of training set
 Use bootstrap sampling with replacement

« Make prediction by averaging

fbtg BZf*b

Regression Example: 1 tree

A4

Regression Example: 10 trees

10

0.5

i
=

0.5

1%
AR §
\'|

—

Al

h“-_

The solid black line is the ground-truth,
Red lines are predictions of single regression trees

Regression Average of 10 trees

-3 -2 -1 D i 2 3

The solid black line is the ground-truth,
The blue line is the prediction of the average of 10 regression trees

Binary Classification

Q
-

Decision Boundary: 1 tree

o
-
)

e T
0
o
-
o

ok
o _

Decision boundary: 25 trees

o

—

@
o

o
o

0.4

0.2

Average over 25 trees

o«
o _
©
o _

.
=

o
= I

Variance of averages

 Given B independent observations
Z1yR2y...2B

e Each one has variance v

« Compute the mean of the B observations
B
- 1
< = E b_zl Zb

« What is variance of this estimator?

Why Bagging Works:
Reduce Variance!

* Flexible learners applied to small datasets have
high variance w.r.t. the data distribution

- Small change in training set -> big change in
predictions on heldout set

- Bagging decreases heldout error by decreasing
the variance of predictions

« Bagging can be applied to any base
classifiers/regressors

Another Idea for Diversity

 Vary the features

Random Forest

Combine example diversity AND feature diversity

Fort=1to T (# trees):
Draw independent bootstrap sample of training set.
Greedy train tree on random subsample of features

For each node within a maximum depth:
Randomly select M features from F features

Find the best split among these M features

Average the trees to get predictions for new data.

o
(\'). —
o
Credit: ISL textbook
o _--' B | Single tree
o | , A‘I l \
1 J' l‘, nl' '—I
L.
53
w o '
J
M V)
TN U ,\'}{ A — s JE;,H»I 1V
o tw o s "“I_'J' ._LF"MTU IR Y ' "t WY
; —
—— Test: Bagging
—— Test: RandomForest
o —— OOB: Bagging
; — —— 0QOB: RandomForest
T T T T T T T
0 50 100 150 200 250 300

Number of Trees

FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m = (/p. The dashed line
indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is considerably lower.

Extremely Randomized Trees
aka “ExtraTrees” in sklearn

Speed, example diversity, and feature diversity

Find the y A variab]

Try 1 random split at each of M variables,
then select the best split of these

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import make_blobs

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.tree import DecisionTreeClassifier

>>> X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
. random_state=0)

>>> CLf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
e random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean()

0.98...

>>> CLf = RandomForest(Classifier(n_estimators=10, max_depth=None,
.. min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean()

0.999...

>>> Clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
.. min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, y, cv=5)

>>> scores.mean() > 0.999

True

Fbs
RestECG
ExAng

Slope
Chol

Age
RestBP
MaxHR
Oldpeak
ChestPain

O
o

Thal

100

o -
N
o
B
o
@
o
o]
o

Variable Importance

FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the marimum.

Applications of Random Forest in Industry

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation

Microsoft Kinect RGB-D camera

front : - /5ide

depth image == bodyparts == 3D joint proposals

How does the Kinect classify each pixel into a body part?

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation
(1.x) (1,x)
tree 1 tree T

P
. Py(c) ’(c)hl.-l

Figure 4. Randomized Decision Forests. A forest is an ensemble
of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the different paths that might be
taken by different trees for a particular input.

3.3. Randomized decision forests

Randomized decision trees and forests [75, 70, 2, %] have
proven fast and effective multi-class classifiers for many
tasks [20), 27, 6], and can be implemented efficiently on the
GPU [#4]. As illustrated in Fig. 4, a forest is an ensemble
of 7" decision trees, each consisting of split and leaf nodes.
Each split node consists of a feature fz and a threshold 7.
To classify pixel x in image /, one starts at the root and re-
peatedly evaluates Eq. 1, branching left or right according
to the comparison to threshold 7. At the leaf node reached
in tree £, a learned distribution P;(¢|], x) over body part la-
bels ¢ is stored. The distributions are averaged together for
all trees in the forest to give thc final classification

1
Ple|ll,x) = TZP((CU x) . (2)

Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:
1. Randomly propose a set of splitting candidates ¢ =
(@, 7) (feature parameters # and thresholds 7).
2. Partition the set of examples Q = {(/.x)} into left
and right subsets by each ¢:

Ql(¢) = {(1,X)|f9(1,X)<T} (3)
Q:(0) = Q\Q(o) (4)

Summary: Ensembles of
Independent Base Classifiers

« Average over independent base predictors
» Why it works: Reduce variance

* PRO

 Often better heldout performance than base model

* CON

- Training B separate models is expensive, but can be
parallelized

