Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2020f/

Boosting

Ensembles of Sequentially-Dependent Predictors

Boosting: depth=1
Boosting: depth=2
—— RandomForest: m=/p

Test Classification Error
0.05 0.10 0.15 0.20 0.25

T
0 1000 2000 3000 4000 5000

Number of Trees

Prof. Mike Hughes

Many slides attributable to:

Liping Liu and Roni Khardon (Tufts)
T. Q. Chen (UW),

James, Witten, Hastie, Tibshirani (ISL/ESL books)


https://www.cs.tufts.edu/comp/135/2019s/

Ensembles: Unit Objectives

Big idea: We can improve performance by
aggregating decisions from MANY predictors

* Prev. class: Predictors are Independently Trained
 Using bootstrap samples of examples: “Bagging”
 Using random subsets of features
« Exemplary method: Random Forest / ExtraTrees

» Today: Predictors are Sequentially Trained
 Each successive predictor “boosts” performance
« How to use gradients to improve further
« Exemplary method: XGBoost



Motivation: Boosting in practice

SVM
08 | = R.af.dom Forest Neural nets
Fraction of = Nelalhe
. — GBM .
competitions 07 boosting
won by
different 0.6
methods
0.5
(Some J\ Random
.\ 0.4
competitions forests
ha}ve multiple
winners, each
with different >
strategies)
0.1
0.0
2011 2012 2013 & 2014 2015 2016

Among 29 Kaggle competitions in 2015
- 17 / 29 (58%) used XGBoost
- 11 / 29 (37%) used deep neural networks

Source: https://www.kaggle.com/antgoldbloom/what-algorithms-are-most-successful-on-kaggle



https://www.kaggle.com/antgoldbloom/what-algorithms-are-most-successful-on-kaggle

Ensemble Method:
Sequentially Predict Residual

* Model 1: Trained to predict original y in train set
* modell.fit (xtr NF, ytr N)

# Compute the Residual Error
rl N = ytr N - modell.predict (xtr NF)



Ensemble Method:
Sequentially Predict Residual

* Model 1: Trained to predict original y in train set
* modell.fit (xtr NF, ytr N)

* Model 2: Trained to predict residual from model 1
* rl N = ytr N - modell.predict (xtr NF)
* model2.fit (xtr NF, rl N)



Ensemble Method:
Sequentially Predict Residual

* Model 1: Trained to predict original y in train set
* modell.fit (xtr NF, ytr N)

* Model 2: Trained to predict residual from model 1
* rl N = ytr N - modell.predict (xtr NF)
* model2.fit (xtr NF, rl N)

* Model 3: Trained to predict residual from model 2

¢ r2 N — ytr N — (modell.predict (xtr NF) + model2.predict (xtr NF))

* model3.fit (xtr NF, r2 N)



Boosting for Regression Trees

ISL textbook Algorithm 8.2 Boosting for Regression Trees

1. Set f (z) =0 and r; = y; for all ¢ in the training set.
2. For b=1,2,...,B, repeat:

(a) Fit a tree fb with d splits (d+ 1 terminal nodes) to the training
data (X,r).

(b) Update f by adding in a shrunken version of the new tree:
f(@) & f(2) + Af*(2). (8.10)
(¢) Update the residuals,
ri 4 i — MfO(z;). (8.11)

3. Output the boosted model,

B
f@)=>"Af(). (8.12)
b=1




Boosting with depth-1 tree

w
s ] Boosting: depth=1
Boosting: depth=2
—— RandomForest: m=/p
5 &
= o
w
A depth-1tree is called a $ -
“stump” g 2.
0 o
)
3
(Be careful, depth-1 still S 5
has branches, so maybe e 3
“sapling” is a better
name than “stump”) o
S

T T T 1
0 1000 2000 3000 4000 5000

Number of Trees

FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The
test error is displayed as a function of the number of trees. For the two boosted
models, A = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both out-
perform the random forest, although the standard ervors are around 0.02, making

] none of these differences significant. The test error rate for a single tree is 24 %.
Credit: ISL textbook f il gnifi fi g 4 7



Regularization of boosted trees



Regularization

0bj(©) = L(©) +2(O)

Training Loss measures how
well model fit on training data

How to measure

complexity?

« Number of nodes
in tree

* Depth of tree

 Scalar prediction
in region (L2
penalty)

Credit: T. Chen

Regularization, measures
complexity of model

Observed user’s interest on topic k
against time t

A User’s interest

b - - - - -

> {

t;
[%] Wrong split point, L(f) is high

>

https://homes.cs.washington.edu/~tqchen/pdf/Boosted Tree.pdf

A User's interest

j—x—\—xfx_x_

K

>
th thtats ts
Too many splits, Q(f) is high
A User’s interest
Nae N N
7¢ A x
X
o
x A A
:
1 > t
ty

[v/] Good balance of Q(f) and L(f)


https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Example Regularization Term

» Define complexity as (this is not the only possible definition)

Qft) =T + 3\ Zgrzl waz'

Number of leaves L2 norm of leaf scores

Y N Q=73+ FA(4+0.01 +1)
~ A B8
Leaf 1 ot Lo
wi=+2 w2=0.1 w3=-1

Credit: T. Chen
https://homes.cs.washington.edu/~tgchen/pdf/BoostedTree.pdf



https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Regularization when boosting

https://xgboost.readthedocs.io/

Minimization objective when adding tree ¢:
n [
obi? = Y I3, 3\") + D Q(f)
i=1 i=1

= ) 1, 37" + fi(x:)) + Q(f:) + constant
i=1

Loss function Regularization
(limit complexity of tree t)


https://xgboost.readthedocs.io/

Gradient boosting



Ensembles of general functions

Suppose we have M functions in an ensemble
M
fu(@) =) fm(z)
m=1
How to update the m-th function to reduce loss?

f = arg mfin L(f)

_ [OL(y, f(21)
fm = Im—1 — PmBm gi"”_[ of (x;)

} f(l"i):fm 1(:1:1')

Motivates an update rule that could be applied to any differentiable loss



Gradient Boosting:
Keep adding trees
Fit each one to the gradient

“Standard” boosting: fit each tree to the residual

Might be difficult for many loss functions other than squared error
N

(‘)m — a8 I(girlal Zl L (yi? f’m—l (‘Bt) + T(:E“ @'7”))

Gradient boosting: fit each tree to match the gradient wrt previous predictions

Should be easy for any differentiable loss function

N
~ ° ’ 2
(;)-m = arg IIlelIl E (—gi-m — T(IU (;)))
i=1 G — [8L(yi,f($i))]
af(xl) f(.L‘):frn l("l'l)



Gradient Boosting Algorithm

From ESL textbook

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fy(z) = arg min., Z L(y;,v).

2. Form =1to M:

(a) Fori=1,2,...,] N compute
oF Compute gradient
Fim = — [( (_” i f ("‘))] . At each training example
()f(-"i ) f=fm—1
(b) Fit a regression tree to the targets r;,, giving terminal regions Decide tree structure
Rim, j=1,2,...,. - by fitting to gradients
(c) For j=1,2,..... J,n compute

Decide leaf values by

Yim = ill’glllill Z L(.l/i‘flll—l(".l) + A) o o e e .
T SR minimizing loss given structure

Add up trees to get the final

((l) Ul)(l“t(‘ fm ) fm—l ‘+' lelml T’Jml(-" € 1‘)_”“ ).
‘ model

3. Output f(.r) = far(x).




To Improve Gradient Boosting

Can extend gradient boosting with

» Second-order approximation of loss

« Smart approximate split finding (speed)
 Penalties on tree complexity

* Very smart practical implementation (speed)
» Parallel computation, sparsity-awareness

Result: Extreme Gradient Boosting
aka XGBoost (T. Chen & C. Guestrin)



XGBoost:
Extreme Gradient Boosting

# XGBoost

from xgboost import XGBClassifier
clf = XGBClassifier()

# n_estimators = 100 (default)

# max_depth = 3 (default)
clf.fit(x_train,y_train)
clf.predict(x_test)



More details (beyond this class)

ESL textbook, Section 10.10

Good slide deck by T. Q. Chen (first author of
XGBoost):

* https://homes.cs.washington.edu/~tgchen/pdf
/BoostedTree.pdf



https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Summary of Boosting

PRO

» Like all tree methods, invariant to scaling of inputs (no
need for careful feature normalization)

 Can be scalable in practice
» Not too many hyperparameters (regularization)

CON
» Greedy sequential fit may not be globally optimal

IN PRACTICE
« XGBoost

« Popular in many competitions and industrial applications



