Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2020f/

Support Vector Machines

Many ideas/slides attributable to: Prof. Mike Hughes
Dan Sheldon (U.Mass.), Erik Sudderth (UCI), Liping Liu (Tufts)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

SVM Objectives (day 17)

Support Vector Machine classifier

- Why maximize margin?
- What is a support vector?
- What is hinge loss?
- Advantages over logistic regression
 - Less sensitive to outliers
 - Advantages from sparsity in when using kernels
- Disadvantages
 - Not probabilistic
 - Less elegant to do multi-class

What will we learn?

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Downsides of Logistic Regression

Logistic regression minimizes log loss, where any example that is *misclassified* pays a *steep cost*.

Thus, this loss function is **sensitive to outliers**. One training example (x, y) can impact optimal weights a lot.

Mike Hughes - Tufts COMP 135 - Fall 2020

Stepping back

Which do we prefer? Why?

Idea: Define binary regions separated by wide margin

We could define such a function:

$$f(x) = w_1 x_1 + w_2 x_2 + b$$

$$f(x) > +1$$
 in region $+1$

$$f(x) < -1$$
 in region -1

Passes through zero in center...

Weight vector w is perpendicular to boundary

Examples that define the margin are called **support** (feature) **vectors**

Observation: Non-support training examples do not influence margin *at all*

Only a **small** fraction of all training examples are support vectors. If we can efficiently identify these vectors, model training (finding weights) might be very fast.

How wide is the margin?

Small margin

- y positive
- ° y negative

$$y = \begin{cases} +1 & if \mathbf{w} \mathbf{x} + b \ge 0 \\ -1 & if \mathbf{w} \mathbf{x} + b < 0 \end{cases}$$

Margin: distance to the boundary

Large margin

- y positive
- ° y negative

 $y = \begin{cases} +1 & if \mathbf{w} \mathbf{x} + b \ge 0 \\ -1 & if \mathbf{w} \mathbf{x} + b < 0 \end{cases}$

Margin: distance to the boundary

How wide is the margin?

Distance from nearest positive example to nearest negative example along vector w:

$$M(w) = \frac{(x_{+} - x_{-})^{T} w}{||w||_{2}} = \frac{(x_{+} - x_{-})^{T} w}{\sqrt{w_{1}^{2} + \dots w_{F}^{2}}}$$

The scalar projection of \overline{a} on \overline{b} is the <u>magnitude</u> of the vector projection of \overline{a} on \overline{b} .

$$|proj\,\overline{b}\overline{a}| = \frac{\overline{a}\cdot\overline{b}}{|\overline{b}|}$$

How wide is the margin?

Distance from nearest positive example to nearest negative example along vector w:

$$M(w) = \frac{(x_{+} - x_{-})^{T} w}{||w||_{2}} = \frac{(x_{+} - x_{-})^{T} w}{\sqrt{w_{1}^{2} + \dots w_{F}^{2}}}$$

By construction, we assume

$$w^{T}x_{+} + b = +1$$

 $w^{T}x_{-} + b = -1$
 $w^{T}(x_{+} - x_{-}) = 2$

$$= \frac{2}{||w||_2}$$

Remember that the L2 norm is shorthand for: $\sqrt{w_1^2 + \dots w_F^2}$

SVM Training Problem Version 1: Hard margin

$$\max_{w,b} \frac{2}{||w||_2}$$

This is a constrained quadratic optimization problem.

There are standard methods to solve this, as well methods specially designed for SVM.

Limitation: Requires **all** training examples to be correctly classified. Otherwise, no solution exists (at least one constraint violated). Thus, hard margin SVM should never be used in practice.

SVM Training Problem Version 1: Hard margin

$$\min_{w,b} \frac{1}{2} ||w||_2$$

 $\min_{w,b} \frac{1}{2} ||w||_2$ Minimizing the L2 norm ||w|| equivalent to maximizing the margin width (1/||w||)

$$\underset{\text{For each n = 1, 2, N}}{\text{subject to}} \begin{cases} w^T x_n + b \ge +1 & \text{if } y_n = 1 \\ w^T x_n + b \le -1 & \text{if } y_n = 0 \end{cases}$$

This is a constrained quadratic optimization problem.

There are standard methods to solve this, as well methods specially designed for SVM.

Limitation: Requires all training examples to be correctly classified. Otherwise, no solution exists (at least one constraint violated). Thus, hard margin SVM should never be used in practice.

Soft margin: Allow *some* misclassifications

Hard vs. soft constraints

HARD: All positive examples must satisfy

$$w^T x_n + b \ge +1$$

SOFT: Want each positive examples to satisfy

$$w^T x_n + b \ge +1 -\xi_n$$

$$\xi_i \ge 0$$

with slack as small as possible (minimize **absolute value**)

Soft constraint leads to hinge loss

hinge_loss
$$(y_n, s_n) = \begin{cases} \max(1 - s_n, 0) & \text{if } y_n = 1\\ \max(1 + s_n, 0) & \text{if } y_n = 0 \end{cases}$$

 $s_n = w^T x_n + b$

distance from boundary \boldsymbol{s}_n

SVM Training Problem Version 2: Soft margin

$$\min_{w,b} \frac{1}{2} w^T w + C \sum_{n=1}^{N} \text{hinge_loss}(y_n, w^T x_n + b)$$

Tradeoff parameter C controls model complexity

Smaller C: Simpler model, encourage large margin even if we make lots of mistakes

Bigger C: Avoid mistakes

SVM vs Logistic Regression: Compare training objectives

$$\min_{w,b} \frac{1}{2} w^T w + C \sum_{n=1}^{N} \text{hinge_loss}(y_n, w^T x_n + b)$$

$$\min_{w,b} \frac{1}{2} w^T w + C \sum_{n=1}^{N} \log \log(y_n, \sigma(w^T x_n + b))$$

Both require tuning complexity hyperparameter C > 0 to avoid overfitting

SVMs: Prediction

$$\hat{y}(x_i) = w^T x_i + b$$

Make binary prediction via hard threshold

$$\begin{cases} 1 & \text{if } \hat{y}(x_i) \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Does not use any notion of probability. Immediately jumps to a hard binary decision.

	SVM	Logistic Regression
Loss	hinge	cross entropy (log loss)
Sensitive to outliers	Less	More sensitive
Probabilistic?	No	Yes
Multi-class?	Only via separate model for each class (one-vs-all)	Easy, using softmax
Kernelizable? (cover next class)	Yes, with speed benefits from sparsity	Yes

Lab Activity

Open Day18 Lab Notebook

- Key idea:
 - What happens to decision boundary of SVM when outliers are added?
 - How does that compare to Logistic Regression?