Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Kernel Methods for regression and classification

Prof. Mike Hughes

Many ideas/slides attributable to: 1101. Will Dan Sheldon (U.Mass.) James, Witten, Hastie, Tibshirani (ISL/ESL books)

Objectives for Day 19: Kernels

Big idea: Use kernel functions (similarity function with special properties) to obtain flexible high-dimensional feature transformations without explicit features

- From linear regression (LR) to kernelized LR
- What is a kernel function?
 - Basic properties
 - Example: Polynomial kernel
 - Example: Squared Exponential kernel
- Kernels for classification
 - Logistic Regression
 - SVMs

Task: Regression & Classification

Supervised Learning Unsupervised

Learning

Reinforcement Learning is a numeric variable e.g. sales in \$\$

Keys to Regression Success

- Feature transformation + linear model
- Penalized weights to avoid overfitting

⁽c) Alexander Ihler

Can fit **linear** functions to **nonlinear** features

A nonlinear function of x:

$$\hat{y}(x_i) = \theta_0 + \theta_1 x_i + \theta_2 x_i^2 + \theta_3 x_i^3$$

Can be written as a linear function of $\phi(x_i) = \begin{bmatrix} 1 & x_i & x_i^2 & x_i^3 \end{bmatrix}$ $\hat{y}(x_i) = \sum_{q=1}^{4} \theta_g \phi_g(x_i) = \theta^T \phi(x_i)$

"Linear regression" means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data

What feature transform to use?

- Anything that works for your data!
 - \sin / \cos for periodic data
 - polynomials for high-order dependencies $\phi(x_i) = \begin{bmatrix} 1 \ x_i \ x_i^2 \dots \end{bmatrix}$
 - interactions between feature dimensions

$$\phi(x_i) = \begin{bmatrix} 1 & x_{i1}x_{i2} & x_{i3}x_{i4} \dots \end{bmatrix}$$

• Many other choices possible

Review: Linear Regression

Prediction: Linear transform of G-dim features $\hat{y}(x_i, \theta) = \theta^T \phi(x_i) = \sum_{g=1}^G \theta_g \cdot \phi(x_i)_g$

Training: Solve optimization problem

$$\min_{\theta} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2 + \text{L2 penalty} \text{(optional)}$$

Problems with high-dim features

• Feature transformation + linear model

(c) Alexander Ihler

How expensive is this transformation? (Runtime and storage)

Thought Experiment

• Suppose that the optimal weight vector can be exactly constructed via a *linear combination* of the training set feature vectors

$$\theta^* = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \ldots + \alpha_N \phi(x_N)$$

Each alpha is a **scalar**

Each feature vector is a **vector of size G**

Justification?

Is optimal theta a linear combo of feature vectors?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$\theta_t \leftarrow \theta_{t-1} - \eta \cdot \frac{d}{d\theta} \operatorname{loss}(y_n, \theta^T \phi(x_n))$$
Let's simplify this via chain rule!

Justification?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$\theta_t \leftarrow \theta_{t-1} - \eta \cdot \frac{d}{da} \operatorname{loss}(y_n, a) \cdot \frac{d}{d\theta} \theta^T \phi(x_n)$$
scalar
scalar
Vector of size G

Justification?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$\theta_{t} \leftarrow \theta_{t-1} - \eta \cdot \frac{d}{da} \operatorname{loss}(y_{n}, a) \cdot \phi(x_{n})$$
scalar
scalar
scalar
Vector of size G
(simplified)

$How \ to \ Predict \ {\rm in \ this \ thought \ experiment}$

$$\theta^* = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \ldots + \alpha_N \phi(x_N)$$

Prediction:

$$\hat{y}(x_i, \theta) = \theta^T \phi(x_i)$$

$$\hat{y}(x_i, \theta^*) = \left(\sum_{n=1}^N \alpha_n \phi(x_n)\right)^T \phi(x_i)$$

$How \ to \ Predict \ {\rm in \ this \ thought \ experiment}$

$$\theta^* = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \ldots + \alpha_N \phi(x_N)$$

Prediction:

$$\hat{y}(x_i, \theta) = \theta^T \phi(x_i) :$$

$$\hat{y}(x_i, \theta^*) = \sum_{n=1}^N \alpha_n \phi(x_n)^T \phi(x_i)$$
Inner product
of test feature vector
with each training feature!

Kernel Function

 $k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$

Input: any two vectors x_i and x_j Output: scalar real

Interpretation: similarity function for x_i and x_i

Properties:

Larger output values mean i and j are more similar Symmetric

Kernelized Linear Regression

• Prediction:

$$\hat{y}(x_i, \alpha, \{x_n\}_{n=1}^N) = \sum_{n=1}^N \alpha_n k(x_n, x_i) = X$$

A T

• Training

$$\min_{\alpha} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \alpha, X))^2$$

Can do all needed operations with only access to kernel (no feature vectors)

Compare: Linear Regression

Prediction: Linear transform of G-dim features $\hat{y}(x_i, \theta) = \theta^T \phi(x_i) = \sum_{g=1}^G \theta_g \cdot \phi(x_i)_g$

Training: Solve optimization problem

$$\min_{\theta} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2 + \frac{\text{L2 penalty}}{\text{(optional)}}$$

Why is kernel trick good idea?

Before: Training problem optimized vector of size G Prediction cost: scales linearly with G (num. high-dim features)

After:

Training problem optimized vector of size N Prediction cost: scales linearly with N (num. train examples) requires N evaluations of kernel

So we get some saving in runtime/storage if G is bigger than N AND we can compute k faster than inner product

Example: From Features to Kernels

$$x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \qquad z = \begin{bmatrix} z_1 & z_2 \end{bmatrix}$$
$$\phi(x) = \begin{bmatrix} 1 & x_1^2 & x_2^2 & \sqrt{2}x_1 & \sqrt{2}x_2 & \sqrt{2}x_1x_2 \end{bmatrix}$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2$$

Compare:

What is relationship between these two functions defined above?

$$k(x,z) \qquad \phi(x)^T \phi(z)$$

Example: From Features to Kernels

$$x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \qquad z = \begin{bmatrix} z_1 & z_2 \end{bmatrix}$$
$$\phi(x) = \begin{bmatrix} 1 & x_1^2 & x_2^2 & \sqrt{2}x_1 & \sqrt{2}x_2 & \sqrt{2}x_1x_2 \end{bmatrix}$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2$$

Compare:

What is relationship between these two functions defined above?

$$k(x,z) \quad = \quad \phi(x)^T \phi(z)$$

Punchline: Can sometimes find **faster** ways to compute high-dim. inner product

Cost comparison

$$x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \qquad z = \begin{bmatrix} z_1 & z_2 \end{bmatrix}$$

$$\phi(x) = \begin{bmatrix} 1 & x_1^2 & x_2^2 & \sqrt{2}x_1 & \sqrt{2}x_2 & \sqrt{2}x_1x_2 \end{bmatrix}$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2$$

Compare: Number of add and multiply ops to compute $\ \phi(x)^T \phi(z)$ Number of add and multiply ops to compute $\ k(x,z)$

Example: Kernel cheaper than inner product

$$x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

$$\phi(x) = \begin{bmatrix} 1 & x_1^2 & x_2^2 & \sqrt{2}x_1 & \sqrt{2}x_2 & \sqrt{2}x_1x_2 \end{bmatrix}$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2 \qquad z = [z_1 \ z_2]$$

Compare: Number of add and multiply ops to compute $\phi(x)^T \phi(z)$ 6 multiply and 5 add Number of add and multiply ops to compute k(x, z)3 multiply (include square) and 2 add

Squared Exponential Kernel

Assume *x* is a scalar

$$k(x,z) = e^{-(x-z)^2}$$

$$\lim_{\mathbf{z} \to \mathbf{z}} x = z$$

Also called "radial basis function (RBF)" kernel

Squared Exponential Kernel

Assume *x* is a scalar

$$k(x, z) = e^{-(x-z)^2}$$

= $e^{-x^2 - z^2 + 2xz}$
= $e^{-x^2} e^{-z^2} e^{2xz}$

Recall: Taylor series for e^x

Squared Exponential Kernel $k(x,z) = e^{-(x-z)^2}$ $=e^{-x^2-z^2+2xz}$ $=e^{-x^2}e^{-z^2}\left(\sum_{k=0}^{\infty}\sqrt{\frac{2^k}{k!}}x^k\right)\left(\sum_{k=0}^{\infty}\sqrt{\frac{2^k}{k!}}z^k\right)$ $=\phi(x)^T\phi(z)$

Corresponds to an INFINITE DIMENSIONAL feature vector

$$\phi(x) = \left[\sqrt{\frac{2^0}{0!}} x^0 e^{-x^2} \quad \sqrt{\frac{2^1}{1!}} x^1 e^{-x^2} \quad \dots \quad \sqrt{\frac{2^k}{k!}} x^k e^{-x^2} \quad \dots \quad \right]$$

Kernelized Regression Demo

Mike Hughes - Tufts COMP 135 - Spring 2019

Linear Regression

clf = sklearn.linear_model.LinearRegression()
clf.fit(x_train, y_train)
plot_model(x_test, clf)

Mike Hughes - Tufts COMP 135 - Spring 2019

Kernel Matrix for training set

• K : N x N symmetric matrix

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) \dots k(x_1, x_N) \\ k(x_2, x_1) & k(x_2, x_2) \dots k(x_2, x_N) \\ \vdots \\ k(x_N, x_1) & k(x_N, x_2) \dots k(x_N, x_N) \end{bmatrix}$$

Linear Regression with Kernel

100 training examples in x_train 505 test examples in x_test

```
def linear kernel(X, Z):
    1.1.1
    Compute dot product between each row of X and each row of Z
    1.1.1
    m1, = X.shape
   m2, = Z.shape
    K = np.zeros((m1, m2))
    for i in range(ml):
        for j in range(m2):
           K[i,j] = np.dot(X[i,:], Z[j,:])
    return K
K_train = linear_kernel(x_train, x_train) + le-10 * np.eye(N) # see note below
K test = linear kernel(x test, x train)
print("Shape of K_train: %s" % str(K_train.shape))
print("Shape of K test: %s" % str(K test.shape))
Shape of K train: (100, 100)
Shape of K test: (505, 100)
```

Linear Regression with Kernel

clf = sklearn.linear_model.LinearRegression()
clf.fit(K_train, y_train)
plot_model(K_test, clf)

Mike Hughes - Tufts COMP 135 - Spring 2019

Polynomial Kernel, deg. 5

Mike Hughes - Tufts COMP 135 - Spring 2019

Polynomial Kernel, deg. 12

Mike Hughes - Tufts COMP 135 - Spring 2019

Gaussian kernel (aka sq. exp.)

Mike Hughes - Tufts COMP 135 - Spring 2019

Kernel Regression in sklearn

			G	
	skl	learn.kei	cnel_ridge.KernelRidge	
	<pre>class sklearn.kernel_ridge. KernelRidge (alpha=1, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None) [source]</pre>			
	<pre>fit (X, y=None, sample_weight=None)</pre>			[source]
Dem	no will use	Fit Kernel Ridg	e regression model	
kernel='precomputed'		Parameters:	X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data. If kernel == "precomputed" this is instead a precomplement of the state of the st	mputed
			<pre>y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values</pre>	
			<pre>sample_weight : float or array-like of shape [n_samples] Individual weights for each sample, ignored if None is passed.</pre>	
		Returns:	self : returns an instance of self.	

Can kernelize any linear model

Regression: Prediction $\hat{y}(x_i, \alpha, \{x_n\}_{n=1}^N) = \sum_{n=1}^N \alpha_n k(x_n, x_i)$

Logistic Regression: Prediction

$$p(Y_i = 1 | x_i) = \sigma(\hat{y}(x_i, \alpha, X))$$

Training for kernelized versions of * Linear Regression * Logistic Regression

SVMs: Prediction

$$\hat{y}(x_i) = w^T x_i + b$$

Make binary prediction via hard threshold $\begin{cases}
1 & \text{if } \hat{y}(x_i) \ge 0 \\
0 & \text{otherwise}
\end{cases}$

SVMs and Kernels: Prediction

$$\hat{y}(x_i) = \sum_{n=1}^{N} \alpha_n k(x_n, x_i)$$

Make binary prediction via hard threshold $\begin{cases}
1 & \text{if } \hat{y}(x_i) \ge 0 \\
0 & \text{otherwise}
\end{cases}$

Efficient training algorithms using modern quadratic programming solve the dual optimization problem of SVM soft margin problem

Support vectors are often **small** fraction of all examples

Support vectors defined by **non-zero alpha** in kernel view

Data points *i* with non-zero weight α_i :

- Points with minimum margin (on optimized boundary)
- > Points which violate margin constraint, but are still correctly classified
- Points which are misclassified

For all other training data, features have no impact on learned weight vector

SVM + Squared Exponential Kernel

Support vectors (green) for data separable by radial basis function kernels, and non-linear margin boundaries

Kernel Unit Objectives

Big idea: Use kernel functions (similarity function with special properties) to obtain flexible high-dimensional feature transformations without explicit features

- From linear regression (LR) to kernelized LR
- What is a kernel function?
 - Basic properties
 - Example: Polynomial kernel
 - Example: Squared Exponential kernel
- Kernels for classification
 - Logistic Regression
 - SVMs