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Objectives for Day 19: Kernels

Big idea: Use kernel functions (similarity function with 
special properties) to obtain flexible high-dimensional 
feature transformations without explicit features

• From linear regression (LR) to kernelized LR
• What is a kernel function?

• Basic properties
• Example: Polynomial kernel
• Example: Squared Exponential kernel

• Kernels for classification
• Logistic Regression
• SVMs
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Task: Regression & Classification
Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning x

y

y is a numeric variable 
e.g. sales in $$



Keys to Regression Success
• Feature transformation + linear model
• Penalized weights to avoid overfitting
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Can fit linear functions to 
nonlinear features
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ŷ(xi) = ✓0 + ✓1xi + ✓2x
2
i + ✓3x

3
i

A nonlinear function of x:

Can be written as a linear function of 

“Linear regression” means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data

�(xi) = [1 xi x
2
i x3

i ]

ŷ(xi) =
4X

g=1

✓g�g(xi) = ✓T�(xi)



What feature transform to use?
• Anything that works for your data!

• sin / cos for periodic data

• polynomials for high-order dependencies

• interactions between feature dimensions

• Many other choices possible
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�(xi) = [1 xi x
2
i . . .]

�(xi) = [1 xi1xi2 xi3xi4 . . .]
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Review: Linear Regression

Training: Solve optimization problem

Prediction: Linear transform of G-dim features

+ L2 penalty
(optional)

ŷ(xi, ✓) = ✓T�(xi) =
GX

g=1

✓g · �(xi)g

min
✓

NX

n=1

(yn � ŷ(xn, ✓))
2



Problems with high-dim features
• Feature transformation + linear model
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How expensive is this transformation?
(Runtime and storage)



Thought Experiment

• Suppose that the optimal weight vector can be 
exactly constructed via a linear combination of 
the training set feature vectors
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✓⇤ = ↵1�(x1) + ↵2�(x2) + . . .+ ↵N�(xN )

Each alpha is a scalar

Each feature vector is a vector of size G



Justification?
Is optimal theta a linear combo of feature vectors?

Stochastic gradient descent, with 1 example per batch,
can be seen as creating optimal weight vector of this form 
• Starting with all zero vector
• In each step, adding a weight * feature vector

Each update step:
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✓t  ✓t�1 � ⌘ · d

d✓
loss(yn, ✓

T�(xn))

Let’s simplify this via 
chain rule!



Justification?
Stochastic gradient descent, with 1 example per batch,
can be seen as creating optimal weight vector of this form 
• Starting with all zero vector
• In each step, adding a weight * feature vector

Each update step:
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✓t  ✓t�1 � ⌘ · d

da
loss(yn, a) ·

d

d✓
✓T�(xn)

scalarscalar Vector of size G



Justification?
Stochastic gradient descent, with 1 example per batch,
can be seen as creating optimal weight vector of this form 
• Starting with all zero vector
• In each step, adding a weight * feature vector

Each update step:
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scalarscalar Vector of size G
(simplified)

✓t  ✓t�1 � ⌘ · d

da
loss(yn, a) · �(xn)



How to Predict in this thought experiment
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✓⇤ = ↵1�(x1) + ↵2�(x2) + . . .+ ↵N�(xN )

Prediction: 

ŷ(xi, ✓
⇤) =

 
NX

n=1

↵n�(xn)

!T

�(xi)

ŷ(xi, ✓) = ✓T�(xi) =
GX

g=1

✓g · �(xi)g



How to Predict in this thought experiment
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✓⇤ = ↵1�(x1) + ↵2�(x2) + . . .+ ↵N�(xN )

Prediction: 

ŷ(xi, ✓) = ✓T�(xi) =
GX

g=1

✓g · �(xi)g

ŷ(xi, ✓
⇤) =

NX

n=1

↵n�(xn)
T�(xi)

Inner product
of test feature vector
with each training feature!



Kernel Function
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k(xi, xj) = �(xi)
T�(xj)

Input: any two vectors xi and xj
Output: scalar real

Interpretation: similarity function for xi and xj

Properties:
Larger output values mean i and j are more similar
Symmetric



Kernelized Linear Regression
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• Prediction:

• Training

ŷ(xi,↵, {xn}Nn=1) =
NX

n=1

↵nk(xn, xi)

min
↵

NX

n=1

(yn � ŷ(xn,↵, X))2

= X

Can do all needed operations with only access to kernel (no feature vectors)
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Compare: Linear Regression

Training: Solve optimization problem

Prediction: Linear transform of G-dim features

+ L2 penalty
(optional)

ŷ(xi, ✓) = ✓T�(xi) =
GX

g=1

✓g · �(xi)g

min
✓

NX

n=1

(yn � ŷ(xn, ✓))
2



Why is kernel trick good idea?
Before:

Training problem optimized vector of size G
Prediction cost:

scales linearly with G (num. high-dim features)

After:
Training problem optimized vector of size N
Prediction cost:

scales linearly with N (num. train examples)
requires N evaluations of kernel

So we get some saving in runtime/storage if
G is bigger than N
AND we can compute k faster than inner product
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Example: From Features to Kernels

20Mike Hughes - Tufts COMP 135 - Spring 2019

k(x, z) = (1 + x1z1 + x2z2)
2

k(x, z) �(x)T�(z)

Compare:
What is relationship between these two functions defined above?

x = [x1 x2]

�(x) = [1 x2
1 x2

2

p
2x1

p
2x2

p
2x1x2]

z = [z1 z2]
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k(x, z) = (1 + x1z1 + x2z2)
2

=

x = [x1 x2]

�(x) = [1 x2
1 x2

2

p
2x1

p
2x2

p
2x1x2]

z = [z1 z2]

Punchline: Can sometimes find faster ways to compute high-dim. inner product

k(x, z) �(x)T�(z)

Compare:
What is relationship between these two functions defined above?

Example: From Features to Kernels



Cost comparison

22Mike Hughes - Tufts COMP 135 - Spring 2019

Compare:
Number of add and multiply ops to compute

Number of add and multiply ops to compute

k(x, z) = (1 + x1z1 + x2z2)
2

k(x, z)

�(x)T�(z)

x = [x1 x2]

�(x) = [1 x2
1 x2

2

p
2x1

p
2x2

p
2x1x2]

z = [z1 z2]



Example:
Kernel cheaper than inner product
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Compare:
Number of add and multiply ops to compute

Number of add and multiply ops to compute

k(x, z) = (1 + x1z1 + x2z2)
2

k(x, z)

�(x)T�(z)
6 multiply and 5 add

3 multiply (include square) and 2 add

x = [x1 x2]

�(x) = [1 x2
1 x2

2

p
2x1

p
2x2

p
2x1x2]

z = [z1 z2]



Squared Exponential Kernel
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k(x, z) = e�(x�z)2

= e�x2�z2+2xz

= e�x2

e�z2

e2xz

Assume x is a scalar

max at x = z

x

Also called “radial basis function (RBF)” kernel

z



Squared Exponential Kernel
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k(x, z) = e�(x�z)2

= e�x2�z2+2xz

= e�x2

e�z2

e2xz

Assume x is a scalar



Recall: Taylor series for e^x
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ex =
1X

k=0

1

k!
xk = 1 + x+

1

2
x2 + . . .

e2xz =
1X

k=0

2k

k!
xkzk



Squared Exponential Kernel
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k(x, z) = e�(x�z)2

= e�x2�z2+2xz

= e�x2

e�z2

e2xzk(x, z) = e�x2

e�z2

 1X

k=0

r
2k

k!
xk

! 1X

k=0

r
2k

k!
zk
!

= �(x)T�(z)

�(x) = [

r
20

0!
x0e�x2

r
21

1!
x1e�x2

. . .

r
2k

k!
xke�x2

. . . ]

Corresponds to an INFINITE DIMENSIONAL feature vector



Kernelized Regression Demo
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Linear Regression
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• K : N x N symmetric matrix
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Kernel Matrix for training set

K =

2

6664

k(x1, x1) k(x1, x2) . . . k(x1, xN )
k(x2, x1) k(x2, x2) . . . k(x2, xN )

...
k(xN , x1) k(xN , x2) . . . k(xN , xN )

3

7775
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100 training examples in x_train
505 test examples in x_test

Linear Regression with Kernel



Linear Regression with Kernel
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Polynomial Kernel, deg. 5
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Polynomial Kernel, deg. 12
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Gaussian kernel (aka sq. exp.)
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Kernel Regression in sklearn
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Demo will use

kernel=‘precomputed’



Can kernelize any linear model
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ŷ(xi,↵, {xn}Nn=1) =
NX

n=1

↵nk(xn, xi)

Regression: Prediction 

Logistic Regression: Prediction 

p(Yi = 1|xi) = �(ŷ(xi,↵, X))



Training for kernelized versions of
* Linear Regression
* Logistic Regression
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min
↵

NX

n=1

(yn � ŷ(xn,↵, X))2

min
↵

NX

n=1

log loss(yn,�(ŷ(xn,↵, X)))



SVMs: Prediction
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Make binary prediction via hard threshold
(
1 if ŷ(xi) � 0

0 otherwise

ŷ(xi) = wTxi + b



SVMs and Kernels: Prediction
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ŷ(xi) =
NX

n=1

↵nk(xn, xi)

Make binary prediction via hard threshold
(
1 if ŷ(xi) � 0

0 otherwise
Efficient training algorithms using modern quadratic programming

solve the dual optimization problem of SVM soft margin problem



Support vectors are often 
small fraction of all examples
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Nearest negative 
example

Nearest positive 
example

x+

x�



Support vectors defined by 
non-zero alpha in kernel view
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SVM + Squared Exponential Kernel
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Kernel Unit Objectives
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Big idea: Use kernel functions (similarity function with 
special properties) to obtain flexible high-dimensional 
feature transformations without explicit features

• From linear regression (LR) to kernelized LR
• What is a kernel function?

• Basic properties
• Example: Polynomial kernel
• Example: Squared Exponential kernel

• Kernels for classification
• Logistic Regression
• SVMs


