Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Kernel Methods for regression and classification

Many ideas/slides attributable to:
Prof. Mike Hughes Dan Sheldon (U.Mass.)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Objectives for Day 19: Kernels

Big idea: Use kernel functions (similarity function with special properties) to obtain flexible high-dimensional feature transformations without explicit features

- From linear regression (LR) to kernelized LR
- What is a kernel function?
- Basic properties
- Example: Polynomial kernel
- Example: Squared Exponential kernel
- Kernels for classification
- Logistic Regression
- SVMs

Task: Regression \& Classification

Supervised
 Learning

Keys to Regression Success

- Feature transformation + linear model
- Penalized weights to avoid overfitting

(c) Alexander Ihler

Can fit linear functions to nonlinear features

A nonlinear function of x :

$$
\hat{y}\left(x_{i}\right)=\theta_{0}+\theta_{1} x_{i}+\theta_{2} x_{i}^{2}+\theta_{3} x_{i}^{3}
$$

Can be written as a linear function of $\phi\left(x_{i}\right)=\left[\begin{array}{llll}1 & x_{i} & x_{i}^{2} & x_{i}^{3}\end{array}\right]$

$$
\hat{y}\left(x_{i}\right)=\sum^{2} \theta_{g} \phi_{g}\left(x_{i}\right)=\theta^{T} \phi\left(x_{i}\right)
$$

"Linear regression" means linear in the parameters (weights, biases)
Features can be arbitrary transforms of raw data

What feature transform to use?

- Anything that works for your data!
- sin / cos for periodic data
- polynomials for high-order dependencies

$$
\phi\left(x_{i}\right)=\left[\begin{array}{lll}
1 & x_{i} & x_{i}^{2}
\end{array}\right]
$$

- interactions between feature dimensions

$$
\phi\left(x_{i}\right)=\left[\begin{array}{lll}
1 & x_{i 1} x_{i 2} & x_{i 3} x_{i 4} \ldots
\end{array}\right]
$$

- Many other choices possible

Review: Linear Regression

Prediction: Linear transform of G-dim features

$$
\hat{y}\left(x_{i}, \theta\right)=\theta^{T} \phi\left(x_{i}\right)=\sum_{g=1}^{G} \theta_{g} \cdot \phi\left(x_{i}\right)_{g}
$$

Training: Solve optimization problem

Problems with high-dim features

- Feature transformation + linear model

(c) Alexander Ihler

How expensive is this transformation?
(Runtime and storage)

Thought Experiment

- Suppose that the optimal weight vector can be exactly constructed via a linear combination of the training set feature vectors

$$
\theta^{*}=\alpha_{1} \phi\left(x_{1}\right)+\alpha_{2} \phi\left(x_{2}\right)+\ldots+\alpha_{N} \phi\left(x_{N}\right)
$$

Each alpha is a scalar
Each feature vector is a vector of size \mathbf{G}

Justification?

Is optimal theta a linear combo of feature vectors?
Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$
\theta_{t} \leftarrow \theta_{t-1}-\eta \cdot \frac{d}{d \theta} \operatorname{loss}\left(y_{n}, \theta^{T} \phi\left(x_{n}\right)\right)
$$

Justification?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$
\begin{array}{r}
\theta_{t} \leftarrow \theta_{t-1}-\eta \cdot \frac{d}{d a} \operatorname{loss}\left(y_{n}, a\right) \cdot \frac{d}{d \theta} \theta^{T} \phi\left(x_{n}\right) \\
\text { scalar } \quad \text { scalar } \quad \text { Vector of size } G
\end{array}
$$

Justification?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$
\theta_{t} \leftarrow \theta_{t-1}-\eta \cdot \frac{d}{d a} \operatorname{loss}\left(y_{n}, a\right) \cdot \phi\left(x_{n}\right)
$$

scalar scalar $\begin{gathered}\text { Vector of size } G \\ \text { (simplified) }\end{gathered}$

How to Predict in this thought experiment

$$
\theta^{*}=\alpha_{1} \phi\left(x_{1}\right)+\alpha_{2} \phi\left(x_{2}\right)+\ldots+\alpha_{N} \phi\left(x_{N}\right)
$$

Prediction:

$$
\begin{aligned}
& \hat{y}\left(x_{i}, \theta\right)=\theta^{T} \phi\left(x_{i}\right): \\
& \hat{y}\left(x_{i}, \theta^{*}\right)=\left(\sum_{n=1}^{N} \alpha_{n} \phi\left(x_{n}\right)\right)^{T} \phi\left(x_{i}\right)
\end{aligned}
$$

How to Predict in this thought experiment

$$
\theta^{*}=\alpha_{1} \phi\left(x_{1}\right)+\alpha_{2} \phi\left(x_{2}\right)+\ldots+\alpha_{N} \phi\left(x_{N}\right)
$$

Prediction:

$$
\begin{aligned}
\hat{y}\left(x_{i}, \theta\right) & =\theta^{T} \phi\left(x_{i}\right): \\
\hat{y}\left(x_{i}, \theta^{*}\right) & =\sum_{n=1}^{N} \alpha_{n} \underbrace{}_{\begin{array}{l}
\text { Inner product } \\
\text { of test feature vector } \\
\text { with each training feature! }
\end{array}}
\end{aligned}
$$

Kernel Function

$$
k\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

Input: any two vectors x_{i} and x_{j}
Output: scalar real
Interpretation: similarity function for x_{i} and x_{j}
Properties:
Larger output values mean i and j are more similar Symmetric

Kernelized Linear Regression

- Prediction:

$$
\begin{gathered}
\hat{y}\left(x_{i}, \alpha,\left\{x_{n}\right\}_{n=1}^{N}\right)=\sum_{n=1}^{N} \alpha_{n} k\left(x_{n}, x_{i}\right) \\
=X
\end{gathered}
$$

- Training

$$
\min _{\alpha} \sum_{n=1}^{N}\left(y_{n}-\hat{y}\left(x_{n}, \alpha, X\right)\right)^{2}
$$

Can do all needed operations with only access to kernel (no feature vectors)

Compare: Linear Regression

Prediction: Linear transform of G-dim features

$$
\hat{y}\left(x_{i}, \theta\right)=\theta^{T} \phi\left(x_{i}\right)=\sum_{g=1}^{G} \theta_{g} \cdot \phi\left(x_{i}\right)_{g}
$$

Training: Solve optimization problem

Why is kernel trick good idea?

Before:
Training problem optimized vector of size G Prediction cost: scales linearly with G (num. high-dim features)

After:
Training problem optimized vector of size N Prediction cost:
scales linearly with N (num. train examples) requires N evaluations of kernel

So we get some saving in runtime/storage if
G is bigger than N
AND we can compute k faster than inner product

Example: From Features to Kernels

$$
\begin{aligned}
x & =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \quad z=\left[\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right] \\
\phi(x) & =\left[\begin{array}{lllll}
1 & x_{1}^{2} & x_{2}^{2} & \sqrt{2} x_{1} & \sqrt{2} x_{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right] \\
k(x, z) & =\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
\end{aligned}
$$

Compare:
What is relationship between these two functions defined above?

$$
k(x, z) \quad \phi(x)^{T} \phi(z)
$$

Example: From Features to Kernels

$$
\left.\left.\left.\begin{array}{rl}
x & =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \quad z=\left[\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right] \\
\phi(x) & =\left[\begin{array}{llll}
1 & x_{1}^{2} & x_{2}^{2} & \sqrt{2} x_{1}
\end{array} \sqrt{2} x_{2}\right. \\
\sqrt{2} x_{1} x_{2}
\end{array}\right]\right] \text { (x,z)}=\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}\right] \text { Compare: } \begin{gathered}
\text { What is relationship between these two functions defined above? }
\end{gathered}
$$

$$
k(x, z)=\phi(x)^{T} \phi(z)
$$

Punchline: Can sometimes find faster ways to compute high-dim. inner product

Cost comparison

$$
\begin{aligned}
x & =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \quad z=\left[\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right] \\
\phi(x) & =\left[\begin{array}{lllll}
1 & x_{1}^{2} & x_{2}^{2} & \sqrt{2} x_{1} & \sqrt{2} x_{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right] \\
k(x, z) & =\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
\end{aligned}
$$

Compare:
Number of add and multiply ops to compute $\phi(x)^{T} \phi(z)$
Number of add and multiply ops to compute $k(x, z)$

Example: Kernel cheaper than inner product

$$
x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]
$$

$$
\phi(x)=\left[\begin{array}{llllll}
1 & x_{1}^{2} & x_{2}^{2} & \sqrt{2} x_{1} & \sqrt{2} x_{2} & \sqrt{2} x_{1} x_{2}
\end{array}\right]
$$

$$
k(x, z)=\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2} \quad z=\left[z_{1} z_{2}\right]
$$

Compare:
Number of add and multiply ops to compute $\phi(x)^{T} \phi(z)$ 6 multiply and 5 add
Number of add and multiply ops to compute $k(x, z)$ 3 multiply (include square) and 2 add

Squared Exponential Kernel

Assume x is a scalar

$$
k(x, z)=e^{-(x-z)^{2}}
$$

Also called "radial basis function (RBF)" kernel

Squared Exponential Kernel

Assume x is a scalar

$$
\begin{aligned}
k(x, z) & =e^{-(x-z)^{2}} \\
& =e^{-x^{2}-z^{2}+2 x z} \\
& =e^{-x^{2}} e^{-z^{2}} e^{2 x z}
\end{aligned}
$$

Recall: Taylor series for $e^{\wedge} x$

$$
\begin{aligned}
e^{x} & =\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}=1+x+\frac{1}{2} x^{2}+\ldots \\
e^{2 x z} & =\sum_{k=0}^{\infty} \frac{2^{k}}{k!} x^{k} z^{k}
\end{aligned}
$$

Squared Exponential Kernel

$$
k(x, z)=e^{-(x-z)^{2}}
$$

$$
=e^{-x^{2}-z^{2}+2 x z}
$$

$$
=e^{-x^{2}} e^{-z^{2}}\left(\sum_{k=0}^{\infty} \sqrt{\frac{2^{k}}{k!}} x^{k}\right)\left(\sum_{k=0}^{\infty} \sqrt{\frac{2^{k}}{k!}} z^{k}\right)
$$

$$
=\phi(x)^{T} \phi(z)
$$

Corresponds to an INFINITE DIMENSIONAL feature vector

$$
\phi(x)=\left[\begin{array}{llll}
\sqrt{\frac{2^{0}}{0!}} x^{0} e^{-x^{2}} & \sqrt{\frac{2^{1}}{1!}} x^{1} e^{-x^{2}} & \ldots & \sqrt{\frac{2^{k}}{k!}} x^{k} e^{-x^{2}}
\end{array} \ldots\right]
$$

Kernelized Regression Demo

Training Data

Linear Regression

```
clf = sklearn.linear_model.LinearRegression()
clf.fit(x_train, y_train)
plot_model(x_test, clf)
```


Kernel Matrix for training set

- K : N x N symmetric matrix

$$
K=\left[\begin{array}{cc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) \ldots k\left(x_{1}, x_{N}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) \ldots k\left(x_{2}, x_{N}\right) \\
\vdots & \\
k\left(x_{N}, x_{1}\right) & k\left(x_{N}, x_{2}\right) \ldots k\left(x_{N}, x_{N}\right)
\end{array}\right]
$$

Linear Regression with Kernel

100 training examples in $\mathrm{x} _$train 505 test examples in x_test

```
def linear_kernel(X, Z):
    Compute dot product between each row of }X\mathrm{ and each row of }
    ' ' '
    m1,_ = X.shape
    m2,_ = z.shape
    K = np.zeros((m1, m2))
    for i in range(ml):
        for j in range(m2):
            K[i,j] = np.dot(X[i,: ], Z[j,:])
    return K
K_train = linear_kernel(x_train, x_train) + le-10 * np.eye(N) # see note belor
K_test = linear_kernel(x_test, x_train)
print("Shape of K_train: %s" % str(K_train.shape))
print("Shape of K_test: %s" % str(K_test.shape))
Shape of K_train: (100, 100)
Shape of K_test: (505, 100)
```


Linear Regression with Kernel

```
clf = sklearn.linear_model.LinearRegression()
clf.fit(K_train, y_train)
plot_model(K_test, clf)
```


Polynomial Kernel, deg. 5

Polynomial Kernel, deg. 12

Gaussian kernel (aka sq. exp.)

Kernel Regression in sklearn

sklearn.kernel_ridge.KernelRidge

```
class sklearn.kernel_ridge. KernelRidge (alpha=1, kernel='linear', gamma=None, degree=3,
coef0=1, kernel_params=None)
[source]
```

$$
\text { fit }(X, y=\text { None, sample_weight=None })
$$

Demo will use
kernel='precomputed'

Fit Kernel Ridge regression model

Parameters:	$X:\left\{a r r a y-l i k e\right.$, sparse matrix\}, shape $=$ [n_samples, $\left.n _f e a t u r e s\right]$ Training data. If kernel $==$ "precomputed" this is instead a precomputed kernel matrix, shape $=$ [n_samples, n _samples]. y : array-like, shape $=$ [n_samples] or [n_samples, n _targets] Target values sample_weight : float or array-like of shape [n_samples] Individual weights for each sample, ignored if None is passed.
Returns:	self : returns an instance of self.

Returns: self : returns an instance of self.

Can kernelize any linear model

Regression: Prediction

$$
\hat{y}\left(x_{i}, \alpha,\left\{x_{n}\right\}_{n=1}^{N}\right)=\sum_{n=1}^{N} \alpha_{n} k\left(x_{n}, x_{i}\right)
$$

Logistic Regression: Prediction

$$
p\left(Y_{i}=1 \mid x_{i}\right)=\sigma\left(\hat{y}\left(x_{i}, \alpha, X\right)\right)
$$

Training for kernelized versions of * Linear Regression * Logistic Regression

SVMs: Prediction

$$
\hat{y}\left(x_{i}\right)=w^{T} x_{i}+b
$$

Make binary prediction via hard threshold

$$
\begin{cases}1 & \text { if } \hat{y}\left(x_{i}\right) \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

SVMs and Kernels: Prediction

$$
\hat{y}\left(x_{i}\right)=\sum_{n=1}^{N} \alpha_{n} k\left(x_{n}, x_{i}\right)
$$

Make binary prediction via hard threshold

$$
\begin{cases}1 & \text { if } \hat{y}\left(x_{i}\right) \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Efficient training algorithms using modern quadratic programming solve the dual optimization problem of SVM soft margin problem

Support vectors are often small fraction of all examples

Nearest positive example

$$
x_{+}
$$

Nearest negative example
x_{-}

Support vectors defined by non-zero alpha in kernel view

Data points i with non-zero weight α_{i} :
$>$ Points with minimum margin (on optimized boundary)
$>$ Points which violate margin constraint, but are still correctly classified
$>$ Points which are misclassified
For all other training data, features have no impact on learned weight vector

SVM + Squared Exponential Kernel

Support vectors (green) for data separable by radial basis function kernels, and non-linear margin boundaries

Kernel Unit Objectives

Big idea: Use kernel functions (similarity function with special properties) to obtain flexible high-dimensional feature transformations without explicit features

- From linear regression (LR) to kernelized LR
- What is a kernel function?
- Basic properties
- Example: Polynomial kernel
- Example: Squared Exponential kernel
- Kernels for classification
- Logistic Regression
- SVMs

