Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Kernel Methods

for regression and classification

10 1

| |
- N =] N 'S o (=]

Prof. Mike Hughes

Many ideas/slides attributable to:

Dan Sheldon (U.Mass.)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

https://www.cs.tufts.edu/comp/135/2019s/

Objectives for Day 19: Kernels

Big idea: Use kernel functions (similarity function with
special properties) to obtain flexible high-dimensional
feature transformations without explicit features

* From linear regression (LR) to kernelized LR

« What is a kernel function?
 Basic properties
« Example: Polynomial kernel
« Example: Squared Exponential kernel

 Kernels for classification
 Logistic Regression
* SVMs

Task: Regression & Classification

Supervised y 1s a numeric variable

Learning e.g. salesin $$

Keys to Regression Success

e Feature transformation + linear model
 Penalized weights to avoid overfitting

Order 3 polynomial
T T T

Order 1 polynomial
T T T

161

14

124

10+

(=] N o+ =] @
T T T

Can fit inear functions to
nonlinear features

A nonlinear function of x:
y(ibz) — (9() + (91337; + (9233@' + (93337:

Can be written as a linear function of Qb (ZC i) [1 L X 2 X 3]

Zegqbg ;) = 07 ¢(x;)

“Linear regressmn means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data

What feature transtorm to use?

» Anything that works for your data!

» sin / cos for periodic data

 polynomials for high-order dependencies

o(x;) =1 x5 27 ..]

 interactions between feature dimensions
d(xi) = |1 TinTio Ti3Tia .. .|

e Many other choices possible

Review: Linear Regression

Prediction: Linear transform of G-dim features
i(x;,0) = 6 ¢(9 -
YLy, 5137,
Training° Solve optimization problem

2 L It
mm E y(x,,0)) Tz ety

(optional)

Problems with high-dim features

e Feature transformation + linear model

Order 1 polynomial Order 3 polynomial

18 - - - 18 i .)
161 16}
141 140
124 124
101 10}

8- 8l

6r 6l

4r a4l

B 2

00 é a . é é {0 1"2 {4 {6 1r8 20 00 é :1 . ;5 {3 110 1'2 1'4 1'6 1'8 20

How expensive is this transformation?
(Runtime and storage)

Thought Experiment

» Suppose that the optimal weight vector can be
exactly constructed via a linear combination of
the training set feature vectors

0" = a19(z1) + a2¢(z2) + ... + ano(zn)

Each alpha is a scalar

Each feature vector is a vector of size G

Justification?

Is optimal theta a linear combo of feature vectors?

Stochastic gradient descent, with 1 example per batch,
can be seen as creating optimal weight vector of this form
» Starting with all zero vector

 In each step, adding a weight * feature vector

Each update step:

d
Or <= 011 =1+ —51085(yn, 0 G(wn))
Let’s simplify this via
chain rule!

Justification?

Stochastic gradient descent, with 1 example per batch,
can be seen as creating optimal weight vector of this form
» Starting with all zero vector

 In each step, adding a weight * feature vector

Each update step:

d d
Oy < 0i_1 — 1 - %1033(%,@) @QTﬁb()

. :
scala scalar Vector of size G

Justification?

Stochastic gradient descent, with 1 example per batch,
can be seen as creating optimal weight vector of this form
» Starting with all zero vector

 In each step, adding a weight * feature vector

Each update step:

d
Oy < 01 —m - %loss(yn, a) - o(xy,)

. :
scala scalar Vector of size G

(simplified)

How to PrediCt in this thought experiment

0" = ar19(x1) + aap(z2) + ... + ang(zn)

Prediction:

How to PrediCt in this thought experiment

0" = ar19(x1) + aap(z2) + ... + ang(zn)
Prediction:

9(2i,0) = 0" p(x;) -

(s, 0

Z n(zn)” G(2;)

Inner product
of test feature vector
with each training feature!

Kernel Function

k(zi,) = ¢p(x:)" ¢(x;)

Input: any two vectors x; and x;
Output: scalar real

Interpretation: similarity function for x; and x;
Properties:

Larger output values mean i and j are more similar
Symmetric

Kernelized Linear Regression

 Prediction:

:‘)(aj’iv Q, {a;n}fr]yzl) — Z O‘nk(w’m ZEZ)
X n=1

* Training N

mmz J(2, @, X))

Can do all needed operations with only access to kernel (no feature vectors)

Compare: Linear Regression

Prediction: Linear transform of G-dim features
i(x;,0) = 6 ¢(9 -
YLy, 5137,
Training° Solve optimization problem

2 L It
mm E (T, 0)) Tos DR

(optional)

Why is kernel trick good idea?

Before:
Training problem optimized vector of size G
Prediction cost:
scales linearly with G (num. high-dim features)

After:
Training problem optimized vector of size N
Prediction cost:
scales linearly with N (num. train examples)
requires N evaluations of kernel

So we get some saving in runtime/storage if
G is bigger than N
AND we can compute k faster than inner product

Example: From Features to Kernels

r=|r] T2 z=[21 29

o(z) =1 22 22 V21 V2x0 V2 19]

k(x,z) = (1+x121 + x222)2

Compare:
What is relationship between these two functions defined above?

k(z, 2) d(z)" ¢(2)

Example: From Features to Kernels

r=|r] T2 z=[21 29

o(z) =1 22 22 V21 V2x0 V2 19]

k(x,z) = (1+x121 + x222)2

Compare:
What is relationship between these two functions defined above?

k(z,z) = o(x) ¢(2)

Punchline: Can sometimes find faster ways to compute high-dim. inner product

Cost comparison

:$1 wz] z=|z1 22

1 22 22 V2x1 V2zs V2xis]

3
|

o)

k(z,2) = (14 2121 + T222)°

Compare:

Number of add and multiply ops to compute ¢ (,CE) T ¢ (Z)

Number of add and multiply ops to compute k (€rT.Z)
y

Example:
Kernel cheaper than inner product

3
|

x1 T2

1 .Cl?% x% V2x1 V2zo \/5:171:172]

o)

k($7 Z) — (1 _|_ T121 _I_ 1.222)2 2= |21 2o

C : T
Ompia\lrlelmber of add and multiply ops to compute ¢ (QE) ¢ (Z)

6 multiply and 5 add
Number of add and multiply ops to compute k (CC) &)

3 multiply (include square) and 2 add

Squared Exponential Kernel

Assume x 1s a scalar

k(x,z) = e~ (#=2)°

max atx =z

/A X

Also called “radial basis function (RBF)” kernel

Squared Exponential Kernel

Assume x 1s a scalar

k(x,z) = e~ (#=2)°

_ e—wQ—ZQ—I—sz

22
:ea:6262:1:z

Recall: Taylor series for e”x

1 1,
Z—' _1+x+§a¢ T

O

2k
62:182 _ E :_mkzk
k!
k=0

Squared Exponential Kernel
k(x,z) = e~ (@=2)°

—:I;2—z +2xz

e (S B

= ()" ¢(2)

Corresponds to an INFINITE DIMENSIONAL feature vector

20 21
\/ :136 \/ :Ue \/ azke_aC oo]

Kernelized Regression Demo

Training Data

g | o
e ®
6 - . ¢ o ® o
| o® & L 4
) 5.0 o ° o oy ~'
. 21 %9 o . .0 % * o
o e 3 * e
@ b L) i
0 1 ﬂ.. :
-2 4 ? o o .g *
o ® o
-4 - O
*

Linear Regression

clf = sklearn.linear model.LinearRegression()
clf.fit(x _train, y train)
plot_model(x_test, clf)

8 - g — Test
o * ® Train
6)
s ® © o
o o ([4
) ve o o v o S,
24 e " o % * .0
O
eI —4— 0 . .
0 4 ‘. o <@
o
=2 ? .0. [« ! *.
o ® o
. @ o

Kernel Matrix for training set

* K: N x N symmetric matrix

k(x1,21) k(x1,22)...k(x1,2zN)
k(xo,z1) k(xo,x2)...k(2x2,2N)

k(mN,ml)]C(SBN,.CEQ) c. k(wN,$N)

Linear Regression with Kernel

100 training examples in x_ train
505 test examples in x_ test

def linear kernel(X, Z):

Compute dot product between each row of X and each row of Z
ml, = X.shape
m2, = Z.shape
K = np.zeros((ml, m2))
for i in range(ml):

for j in range(m2):

K[i,]] = np.dot(X[i,:], Z[J,:])

return K

K _train = linear kernel(x train, x train) + le-10 * np.eye(N) # see note belo:s
K_test linear kernel(x test, x train)

print("Shape of X train: %s" % str(K_train.shape))
print("Shape of X test: %s" % str(K_test.shape))

Shape of K train: (100, 100)
Shape of K test: (505, 100)

Linear Regression with Kernel

clf = sklearn.linear model.LinearRegression()
clf.fit(K _train, y train)
plot model(X test, clf)

8 g — Test
o *® e Train
6 o
I e ¢
ol @ o
’ \.0 o 0 o s'
7 1 [P 0y © o
O A "o —& .
0 1 ‘.. [l
s
-2 - ? .0°) .g *
o ® o
-4 O
-

Polynomial Kernel, deg. 5

Polynomial Kernel, deg. 12

Gaussian kernel (aka sq. exp.)

Kernel Regression in sklearn

sklearn.kernel ridge.KernelRidge

class sklearn.kernel ridge. KernelRidge (alpha=1, kernel="linear’, gamma=None, degree=3,
coef0=1, kernel_ params:None) [source]

£it (X, y=None, sample_weight=None) [source]

Demo will use _ , _
Fit Kernel Ridge regression model

kernelz‘precomputed’ Parameters: X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data. If kernel == “precomputed” this is instead a precomputed
kernel matrix, shape = [n_samples, n_samples].
y : array-like, shape = [n_samples] or [n_samples, n_targets]
Target values

sample_weight : float or array-like of shape [n_samples]
Individual weights for each sample, ignored if None is passed.

Returns: self : returns an instance of self.

Can kernelize any linear model

Regression: Prediction
N
?;(ZCZ', Y, {xn}gzl) — Z Oénk(ajna xz)
n=1

Logistic Regression: Prediction

p(Yi = 1|zi) = o(y(zi, o, X))

Training for kernelized versions of
* Linear Regression
* Logistic Regression

mlnz J(zn, o, X))

min Zlog_lOSS(yn, U(@(xnv o7 X)))
n=1

SVMs: Prediction
J(z;) = w' x; + b

Make binary prediction via hard threshold

{1 if () > 0

0 otherwise

SVMs and Kernels: Prediction

N
y(x;) = Z k(T , 25)
n=1

Make binary prediction via hard threshold
1 if g(z;) >0

0 otherwise

Efficient training algorithms using modern quadratic programming
solve the dual optimization problem of SVM soft margin problem

Support vectors are often
small fraction of all examples

Nearest positive

example
Region +1 X _|_

f(x)=0 f(X)= +1
Nearest negative

example
X _

Region -1

Support vectors defined by
non-zero alpha in kernel view

Data points 7 with non-zero weight o
» Points with minimum margin (on optimized boundary)

» Points which violate margin constraint, but are still correctly classified
» Points which are misclassified

For all other training data, features have »o impact on learned weight vector

f(x)=0

SVM + Squared Exponential Kernel

Support vectors (green) for data separable by radial basis function
kernels, and non-linear margin boundaries

Kernel Unit Objectives

Big idea: Use kernel functions (similarity function with
special properties) to obtain flexible high-dimensional
feature transformations without explicit features

* From linear regression (LR) to kernelized LR

« What is a kernel function?
 Basic properties
« Example: Polynomial kernel
« Example: Squared Exponential kernel

 Kernels for classification
 Logistic Regression
* SVMs

