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Summary of Unit 5:
Kernel Methods
For Regression and 

Classification

Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2020f/

https://www.cs.tufts.edu/comp/135/2019s/
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SVM Logistic
Regression

Loss hinge cross entropy
(log loss)

Sensitive to 
outliers

Less More sensitive

Probabilistic? No Yes

Multi-class? Only via separate 
model for each class
(one-vs-all)

Easy, using softmax

Kernelizable?
(cover next 
class)

Yes, with speed 
benefits from 
sparsity

Yes



Multi-class SVMs
• How do we extend idea of margin to more than 2 

classes? Not so elegant. Two options:

One vs rest
Need to fit C separate models 
Pick class with largest f(x)

One vs one
Need to fit C(C-1)/2 models
Pick class with most f(x) “wins”
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Multi-class Logistic Regression

• How do we extend LR to more than 2 classes?
• Elegant: Can train weights using same 

prediction function we’ll use at test time
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p̂(x) = softmax(wT
1 x,w

T
2 x, . . . w

T
Cx)

<latexit sha1_base64="CX2Uyb5hSgPhD4S+wTSYLrJzMWI="></latexit>



Kernel methods
Use kernel functions (similarity function with 
special properties) to obtain flexible high-
dimensional feature transformations without 
explicit features

Solve “dual” problem (for parameter alpha),
not “primal” problem (for weights w)

Can use the “kernel trick” for:
* regression
* classification (Logistic Regr. or SVM)
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Kernel Methods for Regression
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Kernels exist for:
• Periodic regression
• Histograms
• Strings
• Graphs,
• And more!



Review: Key concepts in 
supervised learning

• Parametric vs nonparametric methods

• Bias vs variance
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Parametric vs Nonparametric

• Parametric methods
• Complexity of decision function fixed in advance 

and specified by a finite fixed number of 
parameters, regardless of training data size

• Nonparametric methods
• Complexity of decision function can grow as more 

training data is observed

9Mike Hughes - Tufts COMP 135 - Fall 2020

Linear regression
Logistic regression

Decision trees
Ensembles of trees

Nearest neighbor methods

Neural networks



10Mike Hughes - Tufts COMP 135 - Fall 2020

Credit: Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html

Bias & Variance

Known “true” response 

Estimate
(a random variable)

ŷ

y
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Decompose into Bias & Variance
is known “true” response value at given known heldout input x

is a Random Variable obtained by fitting estimator to random 
sample of N training data examples, then predicting at xŷ

y

Bias: 
Error from average model to true
How far the average prediction of our 
model (averaged over all possible training 
sets of size N) is from true response

(ȳ � y)2

Variance:
Deviation over model samples
How far predictions based on a single 
training set are from the average prediction

ȳ , E[ŷ]

Var(ŷ) = E[(ŷ � ȳ)2]
<latexit sha1_base64="h1ZEA4WW0jGTPZAVN/oGQAtWEzI=">AAACInicbVDLSgNBEJz1bXxFPXoZDIIeDLtRUA9CUASPEUwUsmvonUzM4OyDmV4xLPstXvwVLx4U9ST4Mc7GCJpYMFBUVTPd5cdSaLTtD2tsfGJyanpmtjA3v7C4VFxeaegoUYzXWSQjdemD5lKEvI4CJb+MFYfAl/zCvznO/YtbrrSIwnPsxdwL4DoUHcEAjdQqHrjI7zBtgMo23S5g2su26CF1A8Cu76cnWZP+6HSbuj6oPHFVoV6rWLLLdh90lDgDUiID1FrFN7cdsSTgITIJWjcdO0YvBYWCSZ4V3ETzGNgNXPOmoSEEXHtp/8SMbhilTTuRMi9E2ld/T6QQaN0LfJPMV9fDXi7+5zUT7Ox7qQjjBHnIvj/qJJJiRPO+aFsozlD2DAGmhNmVsi4oYGhaLZgSnOGTR0mjUnZ2ypWz3VL1aFDHDFkj62STOGSPVMkpqZE6YeSePJJn8mI9WE/Wq/X+HR2zBjOr5A+szy8grqNc</latexit>

= E
h
ŷ2
i
� ȳ2 + ȳ2 � 2ȳy + y2
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E
h �

ŷ(xtr, ytr)� y
�2 i

= E
h
(ŷ � y)2

i

= E
h
ŷ2 � 2ŷy + y2

i

= E
h
ŷ2
i
� 2ȳy + y2

= E
h
ŷ2
i
� ȳ2 + ȳ2 � 2ȳy + y2

(ȳ � y)2

Total Error: Bias^2 + Variance

= Var(ŷ)+

Variance

Expected value is over 
samples of the 
observed training set
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variance

total error

bias
Error due to inability of 
typical fit (averaged over 
training sets) to capture 
true predictive relationship

Error due to estimating from a 
single finite-size training set More flexible

overfitting

Toy example: ISL Fig. 6.5

Less flexible
underfitting

All supervised learning methods must manage bias/variance tradeoff. 
Hyperparameter search is key.



Dimensionality Reduction
& Embedding

14

Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2020f/

Many ideas/slides attributable to:
Liping Liu (Tufts), Emily Fox (UW)
Matt Gormley (CMU)

Prof. Mike Hughes

https://www.cs.tufts.edu/comp/135/2019s/
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What will we learn?
Data Examples 

data 
x

Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning

{xn}Nn=1Task

summary 
of x

Performance
measure
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Task: Embedding
Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning

embedding

x2

x1



Dim. Reduction/Embedding
Unit Objectives

• Goals of dimensionality reduction
• Reduce feature vector size (keep signal, discard noise)
• “Interpret” features: visualize/explore/understand

• Common approaches
• Principal Component Analysis (PCA)
• word2vec and other neural embeddings

• Evaluation Metrics
• Storage size - Reconstruction error
• “Interpretability” 
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Example: 2D viz. of movies 
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Example: Genes vs. geography

Where possible, we based the geographic origin on the observed country data for 
grandparents. We used a ‘strict consensus’ approach: if all observed grandparents 
originated from a single country, we used that country as the origin. If an individual’s 
observed grandparents originated from different countries, we excluded the individual. 
Where grandparental data were unavailable, we used the individual’s country of birth. 

Total sample size after exclusion: 1,387 subjects
Features: over half a million variable DNA sites in the human genome

Nature, 2008
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Example: Genes vs. geography
Nature, 2008



Example: Eigen Clothing
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Centering the Data
Goal: each feature’s mean = 0.0
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Why center?

• Think of mean vector as simplest possible 
“reconstruction” of a dataset
• No example specific parameters, just one F-

dim vector
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min
m2RF

NX

n=1

(xn �m)T (xn �m)

m⇤ = mean(x1, . . . xN )



Mean reconstruction
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original reconstructed



Principal Component Analysis
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Linear Projection to 1D

27Mike Hughes - Tufts COMP 135 - Fall 2020



Reconstruction from 1D to 2D
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2D Orthogonal Basis
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Which 1D projection is best?
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Idea: Minimize reconstruction error



K-dim Reconstruction with PCA
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F vector

High-
dim.
data

K vector

Low-dim
vector

F x K

Weights

F vector

“mean” 
vector

xi = Wzi +m+ ✏i

Problem: Over-parameterized. Too many possible solutions!

If we scale z x2, we can scale W / 2 and get equivalent reconstruction

We need to constrain the magnitude of weights.
Let’s make all the weight vectors be unit vectors: ||W||_2 = 1



Principal Component Analysis

• Input: 
• X : training data, N x F

• N high-dim. example vectors 
• K : int, number of components

• Satisfies 1 <= K <= F

• Output: Trained parameters for PCA
• m : mean vector, size F
• W : learned basis of weight vectors, F x K

• One F-dim. vector (magnitude 1) for each component
• Each of the K vectors is orthogonal to every other
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Training step:  .fit()



Principal Component Analysis

• Input: 
• X : training data, N x F

• N high-dim. example vectors 
• Trained PCA “model” 

• m : mean vector, size F
• W : learned basis of eigenvectors, F x K

• One F-dim. vector (magnitude 1) for each component
• Each of the K vectors is orthogonal to every other

• Output:
• Z : projected data, N x K
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Transformation step:  .transform()



Example: EigenFaces
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Word Embeddings



Word Embeddings (word2vec)

36

Goal: map each word in vocabulary to an embedding vector
• Preserve semantic meaning in this new vector space

vec(swimming) – vec(swim) + vec(walk) = vec(walking)
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Word Embeddings (word2vec)
Goal: map each word in vocabulary to an embedding vector
• Preserve semantic meaning in this new vector space



How to embed?
Training
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Reward embeddings that predict nearby words 
in the sentence.
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Goal: learn weights

Credit: 
https://www.tensorflow.org/tutorials/representation/word2vec

3.2

-4.1

7.1

fixed vocabulary
typical  1000-100k

W =

W

https://www.tensorflow.org/tutorials/representation/word2vec


Dim. Reduction/Embedding
Unit Objectives

• Goals of dimensionality reduction
• Reduce feature vector size (keep signal, discard noise)
• “Interpret” features: visualize/explore/understand

• Common approaches
• Principal Component Analysis (PCA)
• word2vec and other neural embeddings

• Evaluation Metrics
• Storage size - Reconstruction error
• “Interpretability” 
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