Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/20201/

Matrix Factorization for
Recommendation Systems

o~ , "
$ ¥ 500 -
3 N 72X s Dyvirn
- ~3 X 2 4 1
/%\ a Home Rules Leaderboard Update
B v 7 S 3 H
Y’ - Ht'
¥ () IR ;
Wiw. |1 Tv
Many ideas/slides attributable to: Prot. Mike Hughes

Liping Liu (Tufts), Emily Fox (UW) 4
Matt Gormley (CMU)

https://www.cs.tufts.edu/comp/135/2019s/

Matrix Factorization
Objectives (day 23)

« New Task: Recommendation

e Many “users”, many “items”
e Predict which users will like each item

* Collaborative filtering
» Unsupervised learning problem

 Latent Factor model (Reading: Koren et al)
 Training algorithm: Stochastic gradient descent (SGD)

* How to do gradients: Automatic differentiation
 Python package: autograd

Recommendation Task:
Which users will like which items?

Need recommendation everywhere

Google amazon

Linked [T}

Che New Jork Times

A\

| trivago 'i
& Santander .
D 0\ cirbrb

Motivation: Netflix Prize

NETELIX

Home Rules Leaderboard Update

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a

movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team "BellKor's
Pragmatic Chaos”. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

Observed data

* The “value”, “utility”, or “rating” of items to users

b
» In practice, very sparse, many entries unknown

? 60 o

* |2 4 | 1
= |5 3
3 12 45

Task: Recommendation

Supervised
Learning

Content filtering

Unsupervised
Learning

Collaborative filtering

Collaborative filtering

via Latent Factor Models

Ster

[atent Factor Methods
for Collaborative Filtering

Serious

Fig. Credit: Koren et al. '09

1 Braveheart
The Color Purple Amadeus P
Factor 2
7 Lethal Weapon
-eotypically | Senseand |'—— ; Stereotypicall
Geared Sensibility I Ocear’s 11] | g iyp Geare
toward ¢ — tOWard
females Factor 1 @ males
='=; DaVé
The Lion King Dumb and
o Dumber
The Princess Independence q’*(-; ;
Diaries Day N
v Gus
Escapist

Assumption:

- Both movies and users can be
explained via a low-dimensional
space

Latent Factor Recommendation

To find new movies to recommend
to Joe

1) Find Joe’s embedding vector in
the learned “factor” space

2) Recommend movies with
similar embedding vectors

Cartoon View of Matrix Factorization

with 2 latent factors

VIONV18VSYD
NVYIWOM ALll3dd
F1LIv3S NI SS31d331S
VdIvdO3 1D

4Vvs3avo sninr

OY3N

JONVINOY
AYOLSIH

VIONV18VSYD
NVINOM All3dd
31LIV3S NI SS31d331S
VidIvdO3 1D
dvsavo sninnfr
OY3N

mouvies

w
g 2 ~
e <
w =
T O V
=4
o | -
3E &
o (v |
> Vl
- | -
- o
-l | O
olo|lo|H |=H |« |-
=
1111.“.1..1..
- N M g N 0w N
O | O | O | | =™ | |
O 1O (O | | |+ |~
0001111"
1111.“.1.“.
11.111..1..1..
S
GG EGEEGEE A R 5
1 1 1 2
- N o & 1! O ~ .ﬂanV%
_ L _ :E
W =
+'4 - 2 gG
g 3 < i
7 @ > oS
T (@] =R
-4 _..wo
= >
% O g
V)
o~ P
3 i &

Recall: PCA as Matrix
Factorization

X

Q

Compared to PCA, Latent Factor models (LF) for recommendation are

Similar

Use a K-dimensional latent space
Use linear inner products to do "prediction”

Measure reconstruction cost with mean-

squared error

Different

PCA required orthogonality constraints on W,
while LF is less strict

LF interprets each column of data as an
“item”, not a “feature dimension”

PCA requires fully observed data, the LF
models we’ll develop can handle realistic
missingness patterns

[atent Factor Model: Prediction

Assume a known number of factors K
- User i represented by vector u; € R
* Item j represented by vector V; € RE

K
We predict the rating v for ~
p gy R E :Uikvj y
k=1

: . pe Yij
user-item pair (1,J) as:
Intuition: TV
Two items with similar v vectors Uy Uy
get similar ratings from the same user; Inner product of:
Two users with similar u vectors » Uservector

. o)] e Item vector
give similar ratings to the same item

Latent Factor Model: Training

 Find parameters that minimize squared error

min Z (yij — U,LTU]')2

u; ERE yU 5 cRE

1,7 crL train Squared error between
: : * True rating
Which pairs do * Predicted rating

we use?

* How to optimize?
» Stochastic gradient descent
» Use random minibatch of user-item pairs

Supervised Learning vs
Unsupervised Matrix Completion

1 . . .
Regression Collaborative Filtering
X1 Xs ¥
A A
TRAINING
ROWS
NO
DEMARCATION
BETWEEN
TRAINING AND
TEST ROWS
TEST
ROWS
v v
< > € >
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

Fig. Credit: Aggarwal 2016
By way of M. Gormley

Setting up Collaborative
Filtering task

Real data will have known

and unknown entries

Setting up Collaborative
Filtering task

Real data will have known
and unknown entries

Divide known user-item
pairs at random into:

 Training
e Validation

Assumption (for Project C): We only care about predictions among known sets of users and items.
Do not worry about any new users or new items. (Obviously, in real world need to handle new users/items)

Latent Factor Model: Training

 Find parameters that minimize squared error

min Z (yij — U,LTU]')2

u; ERE yU 5 cRE

1,7 crL train Squared error between
: : * True rating

Which ,}3 airs do * Predicted rating

we user:

Only the blue squares
in the matrix Y

* How to optimize?
» Stochastic gradient descent
» Use random minibatch of user-item pairs

Improvement:
Include intercept parameters!

* Overall “average rating” u
 Per-user scalar b;
* Per-item scalar Cj

K
5’,-1- = U+ b,‘ == C; == Z Uik Vik
k=1
Why include these? Improve accuracy

Some items just more popular
Some users just more positive

Project C

Goal: Latent factor models for Moviel.ens100k dataset
043 users, 1683 movies

Problems 1, 2, and 3 develop increasingly interesting models:

M1 min), Oy =’
ijervin
— b; — ¢;)*
Mo v RM Z ()’y ! J
ueER beER” ce i jeg

T Z(Yu p—bi— "“;T"j)2

JGIlram

M3

#bc{u} l{v,

Matrix Factorization
Objectives (day 23)

« Explain Recommendation Task
* Predict which users will like each item

* Collaborative filtering
» Unsupervised learning problem

 Latent Factor model (Reading: Koren et al)
 Training algorithm: Stochastic gradient descent (SGD)

* How to do gradients: Automatic differentiation
 Python package: autograd

autograd : Univariate functions

Import numpy ## Import autograd

import numpy as np import autograd.numpy as ag np
')] import autograd

5 def f(x):
J(x)=x return ag np.square(x)
a O - d.grad(f
g(x) A d_f(x) g = autograd.grad(f)
X

'g' 1s just a function.
You can call it as usual,

g(0.0)

autograd : Multivariate functions

Import numpy ## Import autograd

import numpy as np import autograd.numpy as ag np
‘)] import autograd

F) = (= 1P+ (xp = 1) —xyx, €% £(x.D):

TODO use ag_np.square and other ag_np calls

g = autograd.grad(f)
g(x) = Vif(x)

d d d
=[—/f(x) —fx) ... —f(x)] : : :
0x1 0x; 9xp # 'g' 1s just a function.

You can call it as usual,

g(x_D)

Breakout: Lab on autograd

Automatic differentiation

What it is NOT

« Symbolic differentiation

« Symbolic systems know how to
do algebra, simplify, etc

» Like asking Wolfram Alpha

« Numeric differentiation

 Perturb input by 0.0001 and
estimate the change in function
value

P& Wolfram

derivative(e*{-x/10} cos(x), x)

Approximz

Automatic differentiation

What it is: back propagation
For more demos and info:
https://github.com/HIPS/autograd

What's going on under the hood?

To compute the gradient, Autograd first has to record every transformation that was applied to the input as it was turned into the output of
your function. To do this, Autograd wraps functions (using the function primitive) so that when they're called, they add themselves to a
list of operations performed. Autograd's core has a table mapping these wrapped primitives to their corresponding gradient functions (or,
more precisely, their vector-Jacobian product functions). To flag the variables we're taking the gradient with respect to, we wrap them
using the Box class. You should never have to think about the Box class, but you might notice it when printing out debugging info.

After the function is evaluated, Autograd has a graph specifying all operations that were performed on the inputs with respect to which we
want to differentiate. This is the computational graph of the function evaluation. To compute the derivative, we simply apply the rules of
differentiation to each node in the graph.

Reverse mode differentiation
Given a function made up of several nested function calls, there are several ways to compute its derivative.

For example, given L(x) = F(G(H(x))), the chain rule says that its gradient is dL/dx = dF/dG * dG/dH * dH/dx. If we evaluate this product
from right-to-left: (dF/dG * (dG/dH * dH/dx)), the same order as the computations themselves were performed, this is called forward-mode
differentiation. If we evaluate this product from left-to-right: (dF/dG * dG/dH) * dH/dx)), the reverse order as the computations themselves
were performed, this is called reverse-mode differentiation.

Compared to finite differences or forward-mode, reverse-mode differentiation is by far the more practical method for differentiating
functions that take in a large vector and output a single number. In the machine learning community, reverse-mode differentiation is known
as 'backpropagation’, since the gradients propagate backwards through the function. It's particularly nice since you don't need to
instantiate the intermediate Jacobian matrices explicitly, and instead only rely on applying a sequence of matrix-free vector-Jacobian
product functions (VJPs). Because Autograd supports higher derivatives as well, Hessian-vector products (a form of second-derivative)
are also available and efficient to compute.

Recall: Backprop
(from Unit 3)

Assume: Computation graph with known ordering
0. Do forward pass
1. Update each non-terminal node in reverse order

2. Update each edge’s gradient wrt weights

oFE 0x j
ow ij ow ij
Chain rule update
Each term either:

- simple derivative of known function
- looked up as computation of previous step

Youtput @

dE/dys
dE/dxs
X6
W46 W56
dE/dw dE/dw
y4 y5
dE/dy4 dE/dys
dE/dx4 dE/dxs
X4 X5
W24 W25 W34 W35
dE/dw dE/dw dE/dw dE/dw
y2 ys3
dE/dy2 dE/dys
dE/dx2 dE/dxa
X2 X3
wi2 W13
dE/dw dE/dw
y1 Ytarget

Xinput

Youtput

Backprop for =

d “
g W46 W56
dE/dw dE/dw
Computation graph and ordering discovered by
monitoring the Python interpreter y4 y5
dE/dya dE/dys
dE/dx4 dE/dxs
0. Do forward pass
X4 X5
1. Update each non-terminal node in reverse order
W24 Was W34 W35
2. Update each input parameter’s gradient Sl SN Sy S
Chain rule update involving several terms z : z :
Each term either: dE/dyf dE/dyf
- simple derivative of known function dE/cbe dE/be
- looked up as result of previous step e *
As long as we can compute each elementary wie wis

R .. .
operation’s derivative, we can do this! N

y1

Xinput

Ytarget

