Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.educomp/135/2020f/

Responsible Machine Learning

Image credit: h20.ai

Model Cards for Model Reporting

Image credit: Mitchell et al. '19

Prof. Mike Hughes

Discussion Time!

See link to discussion guide on schedule

You have 15 minutes!

Responsible ML: Takeaways

- Human-centered approach
 - Involve diverse stakeholders at every step
- Cyclical approach
 - Plan to Test, Release, Revise, Repeat
- Know your data: make a Datasheet
 - What is it capable of?
 - Limitations?
- Know your model: make a Model Card
 - What is it capable of?
 - Limitations? (e.g. most ML can't make causal claims)

Review for Unit 5 Quiz

- SVMs for binary classification
 - Concepts: Support Vector, Hard Margin, Soft Margin
 - Hinge Loss
 - Compare/contrast with logistic regression
- Kernels
 - Definition of a kernel function
 - Examples: linear, squared-exponential, periodic
 - Primal vs dual view of prediction and training
 - Practical use: regression (like HW5), classification (with SVM)
- PCA
 - Encoding / decoding operations
 - Training objective
 - Minimize reconstruction error
 - Hyperparameter: How to select K?

- Fairness (at most 1 question)
 - How to tell if classifier is "fair"?
 - What metrics are appropriate?
 - Accuracy vs FPR vs TPR vs

Two views of kernel prediction

1. Pick a kernel **or** feature transform (one implies other)

$$k(x_i,x_j) = \phi(x_i)^T \phi(x_j)$$

2. Then choose a view below (both not always possible)

Primal (weights view, explicit feature vectors)

$$\hat{y}(x_i, \theta) = \theta^T \phi(x_i) = \sum_{g=1}^G \theta_g \cdot \phi(x_i)_g$$

<u>Dual</u> (kernel view, only inner prod of features)

$$\alpha \in \mathbb{R}^N$$

$$\hat{y}(x_i, \alpha, \{x_n\}_{n=1}^N) = \sum_{n=1}^N \alpha_n k(x_n, x_i)$$

Why is kernel trick good idea?

Good with: squared exponential kernel Not so good with: linear kernel with raw features

Before (primal view)

Training problem seeks optimized vector of size G Prediction cost:

scales linearly with G (num. high-dim features) requires G multiply ops plus G-1 adds

After (dual view)

Training problem seeks optimized vector of size N Prediction cost:

scales linearly with N (num. train examples) requires N evaluations of kernel plus N multiply/add

So we get some saving in runtime/storage with dual view if:

G is bigger than N

AND we can evaluate k fast (faster than a size G inner product)

Raw data: X

Centered data: $oldsymbol{X}$ Reconstructed data: $oldsymbol{X}$

View: PCA as Matrix Factorization

View: Encoding and Decoding

Breakout: Practice Quiz Unit 5