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Department of Mathematics,
Room 2-336, MIT,

Cambridge, MA 02139, USA.
toth@math.mit.edu

Abstract—We propose a low overhead scheme for detecting a network
partition or cut in a sensor network. Consider a network S of n sensors,
modeled as points in a two-dimensional plane. An ε-cut, for any 0 < ε <
1, is a linear separation of εn nodes in S from a distinguished node,
the base station. We show that the base station can detect whenever an
ε-cut occurs by monitoring the status of just O( 1

ε
) nodes in the network.

Our scheme is deterministic and it is free of false positives: no reported
cut has size smaller than 1

2
εn. Besides this combinatorial result, we also

propose efficient algorithms for finding the O( 1
ε
) nodes that should act

as sentinels, and report on our simulation results, comparing the sentinel
algorithm with two natural schemes based on sampling.

I. INTRODUCTION

Wireless sensor networks (WSN) have emerged as an important
new technology for instrumenting and observing the physical world.
The basic building block of these networks is a tiny microprocessor
integrated with one or more MEMS (micro-electromechanical sys-
tem) sensors, actuators, and a wireless transceiver. These devices can
be embedded or scattered in large quantities in a physical space,
where they self-organize into an ad hoc multi-hop wireless network,
allowing us to observe and monitor the world at an unprecedented
spatial and temporal resolution. A rich variety of scientific, commer-
cial, and military applications [7], [11], [25], [32] has been proposed
for sensor networks, and many experimental prototypes are under
development in academia and industry. Realizing the full potential of
the sensor networks, however, requires solving several challenging
research problems. Many of these challenges stem from two major
limitations of the sensor nodes: low power and low bandwidth.
Consequently, a number of proposals have been made for improving
the data collection and information processing in sensor networks,
including power-aware routing and scheduling [16], [24], [27], in-
network aggregation [15], [23], [28], query processing [13], data
storage management [12], etc.
In this paper, we address a different kind of challenge for sensor

networks, which does not seem to have received adequate attention.
How to monitor the sensor network itself, and how to detect when the
network has suffered a significant “cut”? After all, if sensor networks
are to act as our remote “eyes and ears,” then we need to ensure that
any significant failure (natural or adversarial) suffered by the network
is promptly and efficiently detected. Tracking the operational health
of the infrastructure is important in any communication network, but
it is especially important in sensor networks due to their unique
characteristics, and the need to perform this duty with very little
overhead.
In our view, power efficiency, scalability, and absence of false

positives are the three most important considerations for a scheme to
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detect network cuts. Because a sensor network’s lifetime is largely
determined by how well it conserves power, solutions where all sen-
sors are continuously monitored are both inefficient and unscalable.
Because sensor networks can vary in size from few hundred nodes
to hundreds of thousands, it is also desirable to design schemes that
are highly scalable, so that the task of cut detection does not end
up consuming a large part of the network resources. Finally, because
many sensor network applications envision unmanned and remote
deployment, failure detection schemes that yield false positive, or
false negatives, are highly undesirable. With this motivation, we now
describe our problem setting.

A. Cuts in Sensor Networks

Consider a set S of n sensors, which are modeled as points in
the two-dimensional plane. (More generally, we can assume that the
sensors lie on a surface or terrain that is topologically equivalent to
the plane.) An adversary can make a linear cut through the sensor
network, disabling all the sensors on one side of the line; the base
station is assumed to lie on the other (safe) side. Formally, given a
line L, let L− and L+ denote the two half-planes defined by L, and
let L−(S) and L+(S) denote the subset of sensors that lie in these
half-planes. We will adopt the convention that the linear cut induced
by L disables all the sensors in L−(S). Alternatively, the adversary
can disrupt the communication so that sensors on one side of the line
cannot communicate with sensors on the other side, including the base
station. These two formulations are equivalent for our purpose. There
are other natural forms of cuts, such as circular cuts, rectangular cuts,
polygonal cuts. We will briefly discuss them in Section VI.

Fig. 1. 1000 sensor nodes, distributed uniformly at random, and a linear
cut. The sentinel nodes for ε = 0.05 are shown as triangles.

We call a linear cut an ε-cut if at least ε fraction of the sensors
are cut off, where 0 < ε < 1 is a user-specified parameter. Formally,
L is an ε-cut if |L−(S)| ≥ ε|S|. Our primary focus in this paper
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is to develop a low-overhead scheme for detecting ε-cuts in sensor
networks.
Our scheme for detecting ε-cuts will choose a small subset of

sensors, which act as sentinels. Each sentinel will communicate with
the base station at a regular time interval. We assume that the base
station is not attacked, and it always lies in the safe halfplane L+.
A communication failure from a sentinel is taken to mean that the
sentinel has been cut off. Our problem now becomes: can one choose
a small number of sensor nodes as sentinels so that (1) every ε-cut
can be detected based solely on the live/dead status of sentinels, and
(2) the algorithm does not report false positives. In Figure 1, we show
a collection of 1000 sensor nodes, distributed uniformly at random,
and its sentinel set for ε = 0.05.
Before describing our results, we first briefly discuss why we chose

ε-cuts as our definition, why avoiding false positives is challenging,
and why the detection scheme requires an approximation slack.

B. ε-Cuts
The ε-cuts are motivated both by practical and theoretical concerns.

It makes practical sense to treat failures as significant only when a
fraction of the network is cut. It may be tempting to ask for schemes
that detect failure of a fixed (user-specified) number of sensors,
regardless of the network size. However, no efficient and scalable
solution is theoretically possible in this case, as the following simple
example shows. Imagine n sensors arranged in a circle, and suppose
we want to detect cuts of size m. Then, at least one sensor for every
m consecutive sensors must be chosen as a sentinel, which scales
very poorly with the network size.

C. False Positives
By monitoring sufficiently many randomly chosen sensors, one can

detect all ε-cuts with high probability. For instance, a random sample
of size O(1

ε
log 1

δε
) is sufficient to catch any ε-cut with probability

at least 1 − δ [21], [22]. The algorithm simply declares an ε-cut
whenever at least one of the chosen sensors fails. Unfortunately, this
simple scheme suffers from the false positives problem. Many cuts
reported by this algorithm, however, are false positives, where the
size of the failed network can be arbitrarily smaller than εn. Indeed,
if one of the random samples happens to lie on the boundary of the
sensor field, then it can cause an alarm even if a single sensor is cut
off.
A more sophisticated form of sampling can effectively eliminate

false positives, but at the expense of a very large number of
sentinels. In particular, the concept of ε-approximation can be used to
distinguish between all cuts larger than εn and those smaller than, say,
1
2εn. But an ε-approximation requiresΘ(

1
ε2
log 1

δ ) sentinel nodes. A
simple calculation, including the actual constants involved, however,
shows that even for modest values of ε = 0.1 and δ = 0.05, the size
of the sentinel set is at least 10, 000! Thus, random sampling based
schemes are infeasible, due to false positives or due to unscalably
large size.

D. The Need for Approximation
Finally, we point out that we need to allow some approximation

slack between an ε-cut and a false positive. If we demand that all
ε-cuts be reported, and no cut of size smaller than εn be reported,
then no scalable solution exists. Consider, once again, the setting of
n sensors arranged in a circle. We claim that in this case every other
sensor must act as a sentinel. Otherwise, suppose that neither of the
two consecutive sensors a and b is a sentinel. Now consider two cuts:
one, where a is not cut but b and the εn−2 predecessors of b are cut;

and second where the cut includes a, b and the εn− 2 predecessors
of b. These two cuts differ only in a but neither a nor b is a sentinel,
so the algorithm cannot distinguish between the two cuts. But, by the
strict ε-cut definition, the former is not a reportable cut, while the
latter is. We adopt the standard convention and set a lower bound on
the size of any cut reported. Specifically, our algorithm successfully
will report every ε-cut and, at the same time, every reported cut
comes with a guarantee: at least ε/2 fraction of the network must
have been cut. The fraction 1/2 is chosen to simplify our analysis,
and it can be replaced by any user specified parameter.

E. Our Contribution
Our paper makes three contributions. First, we prove a combi-

natorial result: for any positive real number ε < 1, there exists a
sentinel set of size O( 1

ε
), which can detect every ε-cut. Moreover,

every cut reported as an ε-cut includes at least 12εn failed sensors. A
key point to note is that the size of the sentinel set depends only on
the parameter ε, and not on n, the size of the sensor network. Thus,
our construction is highly scalable. It is easy to see that the sentinel
size of O( 1ε ) is asymptotically optimal.
Second, we describe two efficient algorithms, a deterministic

algorithm for constructing a minimal sentinel set and a faster ran-
domized algorithm for computing a sentinel set of size O( 1

ε
). All

our algorithms are centralized, because we envision the entire process
taking place at a base station.
Finally, we implemented our scheme and ran simulations using a

variety of synthetic sensor network models. In our simulations, we
found that the size of sentinel set was always significantly smaller
than the worst-case bound of Theorem 3.1. We also compared our
sentinel algorithm with two variants of sampling-based schemes:
random sampling, and radial sampling. Our experiments show that
even for rather well-behaved sensor distributions, these methods
produce a significant number of false positives and false negatives.

F. Related Work
The problem of network partition in sensor networks has been

raised in several papers, but it appears not to have been investigated
formally. In their survey paper [6], Chong and Kumar raise this
problem with a security focus: sensor networks may operate in
hostile environments and schemes to detect tampering should be
built into the design. In [5], Cerpa and Estrin propose schemes for
self-configuring sensor network topologies. They mention network
partition as an important problem for which “complementary system
mechanisms will be needed,” but leave that as a future research
direction. In [19], Lifton, Broxton and Paradiso consider a network
disconnection problem, but with a very different focus: the nodes
are cooperative. For instance, sensor nodes with low battery power
communicate with the network to determine whether the network will
be partitioned if they failed. This is also an experimental paper, with
no formal algorithm analysis.
Our research is inspired by some recent work by Kleinberg et

al. [17], [18] on detecting failures in a wired network. In Kleinberg’s
setting, the network is modeled as an undirected graph on n nodes;
an adversary can destroy up to k edges (or vertices); and the
detection algorithm installs a set of detection agents (equivalent
to our sentinels) that engage in pairwise communication. They are
interested in detecting when the graph is disconnected into two
subsets, each of size at least εn. The main result in [17], [18] is that
every graph has a (ε, k)-detection set (number of sentinels) of size
O(k3 1ε log

1
ε +

1
ε log

1
δ ), which can detect an ε-cut with probability

1 − δ. There are three important differences between these results
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and our results. One, because of the inherent geometric structure
of sensor networks, linear or other geometric partitions are more
natural than the k independent edge failures. Second, due to the
geometric structure of our problem, just O( 1ε ) sentinels suffice in
our case, while in Kleinberg’s case, they require a much larger set
of monitoring nodes, as well as pairwise communication between
those nodes. Finally, our scheme yields no false positives, while the
algorithms proposed in [17], [18] suffer from false positives: every
ε-cut is detected, but not every cut detected in an ε-cut. Indeed, they
do not provide any lower bound on the size of the cut.
The network partition problem has connections with the theory

of VC-dimension [31] and ε-nets [22]. Unfortunately, ε-nets provide
only 1-sided guarantees: |R ∩ N | > 0 does not imply that |R ∩
S| ≥ εn. Thus, ε-nets make poor sentinels: they raise too many false
alarms.
An ε-approximation is a stronger form of sample. Given a set of

n points S, the ε-approximation intersects any range in (roughly)
the same proportion as it intersects S, and so it would make a
nice sentinel set. Unfortunately, the ε-approximation usually requires
too many points (sentinels): it has size O( d

ε2
log 1

εδ
). As mentioned

earlier, with constant factors included, even with modest values of
ε = 0.1 and δ = 0.05, the size of ε-approximation exceeds 10, 000!
In [4], the notion of sensitive ε-approximations is introduced

as a generalization of ε-approximation. However, even sensitive
approximations have O( 1

ε4/3
log 1

δε ) size for linear cuts, whereas our
sentinel sets have optimal O( 1ε ) size. In addition, the deterministic
construction of sensitive approximations is quite involved.

II. GEOMETRIC PRELIMINARIES
The network topology and the communication protocol are not

directly relevant to our result. We simply assume that the sensor
network is connected and that every sensor is able to communicate
with a base station through multi-hop routing, as long as a valid
communication path exists. We also assume that the location of every
sensor is available to the base station. A set S of n sensors scattered
in a terrain is modeled as a set of n points in the plane (ignoring the
altitude of each sensor). Our problem of monitoring the integrity of
the sensor field is best studied in a geometric setting.

A. Sentinel Sets
We wish to detect if the sensor network has suffered a linear cut

of size at least εn. We do so by monitoring a small subset of sensor
nodes, called the sentinel set W . An adversary can introduce a linear
cut, by disabling all sensors lying on the right side L− of a line L. It
is assumed that the base station lies on the safe side, L+. We call a
directed line L an ε-cut if its halfplane L− contains at least ε fraction
of all the sensors; formally, L is a ε-cut if |L−(S)| ≥ εn.
We would like to point out that the base station has no explicit

information about the line L. It only learns the signature vector
σ(W ) that represents the alive or dead status of the sentinel sensors;
that is, σ(W ) is a binary vector of length |W |. Our goal is to compute
a sentinel set of small size that can detect every ε-cut correctly, but
never reports a cut of size less than cεn, for some constant c < 1.
For ease of presentation, we choose c = 1/2 in this paper, but all
our results generalize to any fixed value of c, 0 < c < 1. With this
motivation, we have the following definition.
Definition 2.1: Suppose S is a set of n sensors, and ε > 0 is a

user-specified parameter. A subset of sensors W , where W ⊆ S, is
called an ε-sentinel set if, for any linear cut L, we can decide whether
L is an ε-cut or that L is a smaller than ε

2 -cut, by observing only
the signature σ(W ).

Thus, the signature of an ε-sentinel set will let us detect every cut
of size at least εn. Furthermore, we would also know which cuts
have size less than ε

2
. In the gray area where the size of the cut is

between ε
2n and εn, the algorithm is free to go either way: report it

or ignore it.
Because the sentinels are points (sensor locations) in the plane,

there are precisely m(m − 1) = O(m2) combinatorially distinct
signatures σ(W ) that correspond to linear cuts. Because the base
station cannot distinguish linear cuts that yield identical signatures,
the family of lines corresponding to a specific signature σ(W )
cannot contain an ε-cut and a less-than (ε/2)-cut simultaneously.
This insight suggests that the sentinel problem becomes a separation
problem in a transformed space, which we describe next.

B. A Duality Transform

We use a point-line duality of the Euclidean plane. The dual of a
point p(a, b) is the line p∗ : y = ax − b and, conversely, the dual
of a (non-vertical) line L : y = ax − b is the point L∗ : (a, b).
The vertical lines can be handled by using a slightly more involved
projective duality. Instead, we use the simpler transform here, and
assume that all sensor nodes have distinct x-coordinates. In this way,
for every vertical line, there is a slightly perturbed non-vertical line
with the same signature σ(S). It can be easily checked that the duality
transform inverts the above-below relation: if point p lies above (resp.
below) line L, then the dual line p∗ is below (resp. above) the dual
point L∗. A similar transform is used in Liu et. al. [20] for tracking
a linear shadow over a sensornet.
The duality transform maps our set S of n sensors into a set S∗

of n lines. Conversely, a linear cut L is transformed into a point
L∗. We point out that the orientation of L is lost in the duality.
We assume throughout that the line L is oriented so that the right
halfplane L− lies above the line L. Thus, in the linear cut induced
by L, all the sensors above L are cut off. A similar argument holds
when the halfplane L− lies below L. Thus, to cover both cases, we
will consider cuts where either εn points lie below the cut, or εn
points lie above the cut.

m
�

p3

p1

p2

p4
p6

p5

p7

p∗2

p∗3

p∗7

p∗5
p∗6

p∗1

p∗4
m∗

3rd level

�∗

Fig. 2. A set of 7 points (left), and the corresponding dual arrangement
(right). The lines and m dualize to points ∗ and m∗, respectively. The
duality transform inverts the above-below relation; for instance, point p5 lies
above line , and its dual line p∗5 lies below the dual point

∗. The 3-level of
the arrangement is shown in bold.

C. Line Arrangements and Levels

The set of n lines S∗ in the dual plane form a line arrangement,
denoted H(S∗). The arrangement is a dissection of the plane into
convex polygons, some of which are unbounded. The vertices of
the arrangement are the intersection points between pairs of lines;
the edges of the arrangement are the line segments between two
consecutive vertices on a line. An arrangement of n line has at most
n(n − 1)/2 vertices and at most n(n + 1) edges. For technical
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simplification, we assume that no more than 2 lines pass through
a vertex.
The set of edges in the arrangement that lie above exactly k − 1

other lines form an x-monotone polygonal curve. This curve is called
the k-level of the arrangement. (A point (a, b) is above k lines if the
ray {(a, y) : y < b} crosses exactly k lines of the set S∗.) The 1-
level, for instance, is the lower envelope of the arrangement. A k-level
bends at every vertex along its way. See Figure 2 for illustration.
Consider a sentinel set W ⊆ S, and some linear cut L. The

signature σ(W ) of W with respect to L tells us which sensors are
below the line L and which ones are above L. In the transformed
plane, this tells us which lines of W ∗ pass above the dual point L∗,
and which ones pass below L∗. In order for W to be an ε-sentinel,
we should be able to decide for any point L∗ whether at least εn
lines of S∗ pass below L∗ or fewer than εn/2 lines of S∗ pass below
L∗, based solely on the signature σ(W ). Thus, W is an ε-sentinel if
for any point L∗ we can tell if L∗ lies above the (εn)-level or below
the (εn/2)-level of H(S∗) based on the location of the point L∗ in
the arrangement formed by W ∗. The important point here is that we
want to determine the location of a point in the arrangement of S∗,
but do so by looking only at the arrangement formed by the much
smaller set W ∗.

D. Minimum Link Separators in Arrangements
Given two disjoint simple polygonal curves, γ1 and γ2, in the

plane, a separator is a polygonal curve that partitions the plane
into two parts such that γ1 and γ2 lie on opposite sides of . A
minimum link separator for γ1 and γ2 is such a separator with the
minimum number of vertices (i.e., bends).
A minimum link separator between the εn and the εn/2 levels

of the arrangement H(S∗) can efficiently distinguish ε-cuts from
the less than (ε/2)-cuts. Specifically, if L∗ lies below ρ then L is
certainly not an ε-cut; and if L∗ lies above ρ then L is surely an
(ε/2)-cut. A minimum link separator, in general, is free to use any
lines. However, in our setting, this separator will be used to form a
sentinel set, and therefore we must use only the lines of S∗ in the
minimum link separator. (Indeed, the previously known algorithms
for constructing separators did not require the separator be part of
the arrangement [10], [21].) Therefore, in the following discussion,
we define the separator in an arrangementH to be a polygonal curve
that only uses the edges of the arrangement H .

III. COMBINATORICS OF SENTINEL SETS
In this section, we prove our first main result and show that

there is a separator with O( 1ε ) links. The sentinel set is formed by
choosing the points whose dual lines contain these links. We next
show that based on the signature σ(W ) of this set, we can determine
in O( 1ε log

1
ε ) time if there is a linear cut of size at least εn, or that

the cut is smaller than εn/2. Since we do not know the orientation
of the cut, we make two sentinel sets: one for the separator of top
levels and and the other for bottom levels. If the signature of any one
of them indicates a cut of size at least εn, then we declare there is
an ε-cut in the network.

A. Existence of a small sentinel set
The following theorem states our main combinatorial result.

Theorem 3.1: In an arrangement of n lines in the plane, there is
always a separator of size O( 1ε ) between levels εn and

1
2εn.

The proof of the theorem relies on a couple of technical lemmas
about separators and levels. Consider an a-level and a b-level in the

arrangement of n lines in the plane, where 0 ≤ a < b ≤ n. For
any integer k, where a ≤ k ≤ b, we define a specific x-monotone
zig-zag separator, denoted z(k), between the a-level and the b-level.
Informally, the separator z(k) starts with the leftmost segment of the
k-level, follows that line until it runs into either the a-level or the
b-level at a vertex, at which point it “reflects” and follows the other
line determining that vertex. Thus, the path z(k) zig-zags between
the a-level and the b-level. We note that z(k) is an x-monotone path,
it only uses the lines of the arrangement H(S∗), and all its “bends”
are at convex vertices of the a-level or at reflex vertices of the b-
level; indeed, it can also have several consecutive bends along the
same level, on the reflex vertices of a-level and the convex vertices
of b-level. See Figure 3 for an example.

zig−zag path z(k)
a−level

b−level

level

1
4εn

2
3εn

5
6εn

εn

Fig. 3. A zig-zag path between two levels.

Altogether there are (b−a+1) such paths between the a-level and
the b-level, one for each value of k between a and b. The following
lemma notes that these paths are pairwise edge-disjoint.

Lemma 3.2: The (b−a+1) zig-zag separators between the a-level
and the b-level are pairwise non-overlapping; that is, they can only
intersect at vertices.

Proof: The leftmost edges of the zig-zag paths are pairwise
disjoint by definition. If two zig-zag paths, say, z(k) and z(k0) meet
at a vertex v and they reach v from the left on different lines, then
v cannot be a convex vertex of the a-level nor a reflex vertex of the
b-level, and so both z(k) and z(k0) pass through v without a bend.
If v is a convex vertex of the a-level or a reflex vertex of the b-level,
then only one zig-zag path can reach it from the left, and so only
one path leaves it on the right.

Thus, the total number of bends in all the (b−a+1) zig-zag paths
is upper-bounded by the number of convex vertices of the a-level and
the reflex vertices of the b-level. We, therefore, have the following
lemma.

Lemma 3.3: If the a-level and the b-level have x vertices in total,
then there exists a zig-zag path between them of size at most

x

b− a+ 1
.

So, how many vertices can a single level of the n-line arrangement
have? Unfortunately, determining the asymptotic complexity of levels
in line arrangement is a notoriously difficult problem in computational
geometry [9]. The best known upper bound for the complexity of
k level is O(nk1/3) due to Dey [8], and the best lower bound is

0-7803-9202-7/05/$20.00 (C) 2005 IEEE



Ω(n · 2
√
log k) due to G. Tóth [29]. On the other hand, the average

size of the first k level is always linear, by a result of Alon and
Győri [2]. In particular, they show that, for any k, where 1 ≤ k ≤ n,
the total size (number of vertices) of the levels 1 through k is nk. We
use this result to show that there is a linear size level in the vicinity
of an εn level and of an (εn/2)-level.

Lemma 3.4: In an arrangement of n lines in the plane, there is
always a level of size at most 6n between the levels 5

6
εn and εn.

Similarly, there is always a level of size at most 4n between levels
2
3εn and

1
2εn.

Proof: By the result of Alon and Győri [2], the total complexity
of the first εn levels is at most εn2. Clearly, this is also an upper
bound on the total complexity of the 1

6εn+ 1 levels between levels
εn and 5

6εn. By the pigeon hole principle, at least one of these levels
must have size at most εn2/(1

6
εn+1) ≤ 6n. An analogous argument

shows that there is a level of size at most 4n between levels 2
3εn

and 1
2εn.

We can now complete the proof of Theorem 3.1.

Proof: [of Theorem 3.1] Consider an arrangement of n lines in
the plane. Choose a and b such that 1

2
εn ≤ a ≤ 2

3
εn ≤ b ≤ εn,

and the size of the a level is at most 4n and the size of the b-level
is at most 6n; such a and b exist by the preceding lemma. The total
size of these two levels is at most 10n, and (b − a + 1) ≥ 1

6εn.
By Lemma 3.3, we conclude that there is a zig-zag path of size
O(1ε ) between levels a and b. This zig-zag path is clearly a separator
between the εn and the 1

2εn levels.

The constant factors in Theorem 3.1 are quite loose. Our primary
goal is simply of prove the asymptotic result that sentinel sets of size
O(1ε ) exist. Our simulations show that in practice the sentinels sets
are significantly smaller than the worst-case bound would indicate.

B. Detecting ε-cuts from a signature
The εn sensors that are cut off may lie either below or above the

line. We, therefore, compute two separators, one to detect separation
of points below the cutting line, and the other to detect separation
above the line. In order to avoid unnecessary replication, we describe
our scheme for the lower separator, with the understanding that
the complete construction involves a symmetric application of the
algorithm for the other case as well.
We have shown that there is an O( 1

ε
) size separator between levels

εn and 1
2εn in the arrangement. We choose our sentinel set W to

be the dual of these O( 1ε ) lines. Let w1, w2, . . . , wm, where m =
O(1/ε), denote the points (sensors) forming the sentinel set. We now
show how to use the signature σ(W ) to determine whether there is
an ε-cut or the cut is below the ε

2 -cut threshold. See Figure 4 for an
illustration.
Given a separator of size O( 1ε ) between levels εn and

1
2εn in the

arrangement H(S∗), the set W ∗ of lines spanned by the separator
edges (the dual lines of the sentinels), and a signature vector σ(W ),
we can report ε-cuts as follows. If a sensor wi is dead, then we
know that the dual of any possible linear cut L must be above w∗i .
Otherwise, we know that the dual must be below w∗i . In either case,
one of the two halfplanes defined by w∗i is where the dual point
L∗ could possibly be. We determine the common intersection C of
all the m halfplanes, one for each w∗i , which can be computed in
O(m logm) time by a standard divide and conquer algorithm [26].
We then choose an arbitrary point p ∈ C in this common intersection,
and determine if p lies above or below the separator. This can be
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−

w2
+

w3
−

w4
−

w5
+

w6
+

ε-separator
p

Fig. 4. The intersection of the half-planes determined by the sentinel lines
is a cell of the arrangement.

done in O(logm) time because the separator is x-monotone and it
has m links: it is sufficient to find the line w∗ ∈ W ∗ (by binary
search) that lies directly above or below p, and test against that. If p
is above the separator, we report that there is an ε-cut. Otherwise, we
report that no ε-cut exists. Due to lack of space, we omit the detailed
proof of correctness of this algorithm. Instead, we simply illustrate
the construction on an example.
Figure 4 shows an example with six sentinel nodes. Suppose that

only w2, w5, and w6 send signals to the base station, and so w1, w3,
and w4 are assumed to be cut off. The dual of any ε-cut must lie above
the lines w∗1 , w∗3 and w∗4 , and it must lie below the lines below the
lines w∗2 , w∗5 , and w∗6 . The common intersection of these halfplanes
is shown as C. A point p ∈ C lies above the ε-separator (drawn in
bold line), and so we report an ε-cut.

IV. COMPUTING A SENTINEL SET

Our proof of Theorem 3.1 directly leads to a deterministic al-
gorithm: we first compute the a and b levels, which are each
of linear size, then find all the zig-zag separators, and pick the
smallest one, which is guaranteed to have size O( 1ε ) size. In the
following, we present two improved schemes. an O(n2 logn) time
deterministic algorithm for computing a minimum link separator, and
an O(n

ε
logn) time randomized algorithm for computing an O( 1

ε
)

size separator.

A. Finding a Minimum Link Separator
The algorithm implicit in our proof only uses the vertices of the a

and b-levels. A minimum link separator, however, can use any lines
and vertices between these two levels. Our new algorithm performs
a plane-sweep over the arrangement H(S∗), and for every edge e
(between levels a and b) computes the minimum number of turns
necessary to reach it from the left horizon boundary. In this way, we
can compute the optimal separator between the levels a and b. The
algorithm processes O(n2) vertices from left to right. Sorting the
vertices by x-coordinates requires O(n2 logn) time, which can be
done either in advance or online by updating an event queue. At every
vertex, only O(1) work is done. We record all computation in O(n2)
space in order to be able to back-track and output a minimum link
separator when the line-sweep terminates. We compute an optimal
size minimum link separator in O(n2 logn) time and O(n2) space.
Due to lack of space, we omit further details from this abstract.
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Fig. 5. The leftmost figure shows the uniform data for n = 5000; the middle figures shows the non-uniform data for n = 5000; the rightmost figure shows
the US Census data (we show only a randomly sampled subset of points for clarity). In each case, we show a sentinel set for ε = 0.01 and n = 5000.

B. A Randomized Algorithm for Computing a Separator

The basic idea of our randomized algorithm goes back to our
combinatorial proof presented in Section III. Every time we used the
pigeon hole principle to find a below-average size level and a zig-zag
path, we can use a random level and zig-zag path. The random choice
will return a level or path of expected (average) size with constant
probability.
In particular, we begin by choosing two integers uniformly at

random a ∈ [ 12εn, 23εn] and b ∈ [ 56εn, εn], and a random integer
k ∈ [a, b]. We then compute the zig-zag path z(k). We show that each
segment of this path can be traced in O(n logn) time. Again, due
to lack of space, we omit further details from this abstract. Since the
zig-zag path z(k) has expected complexity O( 1ε ), the algorithm runs
in expected time O(n

ε
logn). It is important to note that although

the size of sentinel has probabilistic guarantees, the resulting zig-
zag path is always a separator between levels 1

2εn and εn. In our
experiments, we found that in practice the size of the ε-sentinel set
is consistently smaller than the worst-case combinatorial bound.

V. EXPERIMENTAL EVALUATION

In this section, we describe our simulations results that are intended
to evaluate the scalability of our sentinel based scheme. We also
performed experiments comparing our scheme with some simple
sampling-based methods.
The geometric distribution of sensors is likely to vary widely from

application to application. We, therefore, generated several random
and non-random distributions of points in the plane to model a variety
of sensor networks. We used three main data sets in our simulation:
(1) uniform, (2) non-uniform, and (3) US census data. Figure 5 shows
example distributions of these three sets. The uniform set contains n
random points uniformly distributed in a square. The non-uniform set
contains n points, equally divided among k clusters. Each cluster is
centered at a random point, and the points in the cluster are generated
using a Gaussian distribution. The last set is a US Tiger Census map,
which includes locations of 14, 000 geographical features in the USA.
We chose these locations as positions for the sensors.
Our first set of experiments show the scalability of the sentinel sets

as a function of n and ε.

A. Scalability with Network Size

In order to isolate the effect of network size, we ran all experiments
with a fixed value of ε = .01; the results are nearly identical with
other values of ε. We generated networks of all three types (uniform,
non-uniform, and tiger), with n varying from 1000 to 14000; for the
census data, we randomly chose n points from the set for n smaller

than 14K . All the results shown in this experiment are averaged over
5 different seed values for the random number generator.
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Fig. 6. The size of sentinel set vs. the network size.

As predicted by the theory, the results (Figure 6) show that the size
of the sentinel set is independent of n. Moreover, the observed size
of the sentinel set is significantly smaller than the worst-case bound
of Theorem 3.1. In all cases, the sentinel set was smaller than even
1/ε.

B. Scalability with ε
In this experiment, we evaluated the behavior of our scheme with

different values of the cut threshold ε. These experiments were
performed with networks of a fixed size n = 5000. We varied ε
from 0.001 to 0.1, and the result is shown in Figure 7; again, all
the results are averaged over 5 different seed values for the random
number generator.
As expected, the size of the sentinel set increases as the value of ε

decreases. Still, the size of the sentinel sets in all cases is significantly
smaller than the worst-case bound of Theorem 3.1. Even for very
small values of ε, say ε = 0.001, the algorithm generates sentinel
sets of size less than 30.

C. Comparison with Other Schemes
We mentioned earlier that the problem of detecting network cuts

has been raised in several papers, but no algorithms seem to have
been proposed for it. Thus, we don’t have any specific algorithm to
compare with. (The ε-approximation is not a good scheme, because
it requires a very large set of sentinels.)
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Fig. 7. The size of sentinel set vs. ε.

Instead, we implemented two natural heuristics to evaluate their
effectiveness in comparison to our sentinel algorithm. Both schemes
are based on sampling. In the first one, called random sampling,
we choose a certain number of sensors uniformly at random and
designate them as sentinels. Whenever any one of these chosen
sentinels is cut off, the algorithm declares an ε-cut. In order to make
a fair comparison with our sentinel scheme, we choose the same
number of random nodes as the size of our sentinel set. A second
scheme does radial sampling: we choose |W | directions uniformly,
and for each direction choose the εn-th extreme point, where |W | is
the size of the sentinel set for that instance.
For each test case, we first run our sentinel algorithm to compute

the sentinel setW , and then useW samples for the random sampling
and the radial sampling schemes. We evaluated the effectiveness of
these schemes using false negatives and false positives. That is, how
many ε-cuts are missed by these schemes (false negatives), and how
many cuts reported as ε-cut are smaller than εn/2. Our sentinel
scheme yields no false positives or negatives, as guaranteed by theory.
We fixed n = 5000, and varied ε in the range [0.001, 0.1]. We

show the results averaged over all the datasets, because we found
that the characteristics of error is very similar across different sets.
We simulated a large number of random linear cuts, and measured
the false positives and negatives in each case.
For false negatives, we generated 250 cuts by randomly sampling

between the εn and 2εn levels of the arrangement. All these are
true ε-cuts and, therefore, should be detected. Figure 8 shows that
the sentinel scheme correctly detects all these cuts, but the random
and radial sampling miss a significant fraction (between 10% and
40%) of these ε-cuts. We also ran experiments where cuts were
chosen randomly between εn and 10εn levels, and the results were
essentially identical.
A further study (results not shown here) revealed that these

incorrect decisions are also arbitrarily bad in terms of quality. With
ε = .01, for instance, nearly 8% of the false negatives were in fact
cuts where more than 7εn of the sensors were cutoff; and some cuts
of size up to 10εn remained undetected.
For false negatives, we generated 250 cuts by randomly sampling

between level 1 and level 1
2
εn. These cuts are all below the

approximation threshold, and so should not be reported. However, as
Figure 9 shows the random and the radial sampling schemes misreport
some of them as cuts.
In conclusion, even for relatively well-behaved distributions, the
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sampling schemes yield many false positives and negatives. Because
the sentinel scheme chooses its sentinels carefully based on the
distribution of points, in more irregular distributions, it can have
significantly fewer sentinels than random sampling based methods.
For instance, consider an example with three clusters of εn points
each near the corners of an isosceles triangle; the remaining n−3εn
points lie in a cluster near the center of the triangle. Our scheme picks
a constant number of sentinels from the 3 corners, which are sufficient
to detect all ε-cuts. In random sampling, it will take Ω( 1ε log

1
εδ )

samples to ensure with probability 1 − δ that nodes from all three
corner clusters are selected. Similar constructions are possible for
radial sampling too.

VI. DISCUSSION AND FUTURE DIRECTIONS

We proposed a simple, low-overhead scheme for detecting cuts
(partitions) in sensor networks. We show that linear ε-cuts can be
detected by monitoring just O( 1ε ) nodes of the network, which is
asymptotically the best possible; a simple example of n sensors
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arranged in a circle gives a matching lower bound. In practice,
however, we expect even fewer than 1

ε
sentinels, which is borne out

by our simulation results.
An important feature of our algorithm is the lack of false positives

or false negatives. Thus, every cut of size εn or larger is detected,
and no cut is reported unless it includes at least 12εn nodes.
One issue that we did not address is the noise or the inherent

instability of individual sensor nodes. If one of the sentinel nodes
dies naturally, it can mislead our algorithm. One possible way to
deal with the inherent unreliability of individual sensors is to use
multiple copies of sentinel sets. For instance, instead of one, we can
compute k disjoint sentinel sets. Whenever an ε-cut occurs, each
set independently will detect it. We can adopt the policy that we
report an ε-cut only all k sets (or a majority of them) agree. Finding
cut-detection schemes that are inherently fault-tolerant to multiple
individual node failures is a challenging research problem, and a topic
of our future work. We have implicitly assumed that the network cut
does not destroy the communication path between any live sentinel
and the base station. If a live sentinel’s path does get disrupted, we
can use any of the reactive ad hoc network protocols to discover and
set up a new path to the base station.
In this paper, we have tried to minimize the communication cost

for detecting linear cuts by using only a small number of sentinel
nodes. Different sets of sentinels, however, may lead to different
communication costs, and an important second-order optimization
would take this effect into account. Another way to minimize the
communication in the network would be to make the cut detection
more decentralized. These are both very practical questions and
natural directions for future work.
In this paper we have limited ourselves to linear cuts. This is

an important and natural class of cuts, but a richer set of cuts
would include circular cuts, rectangular cuts, and polygonal cuts.
These classes, including the polygonal cuts as long as the polygons
have only a constant number of sides, are ranges with a finite VC
dimension. Therefore, the basic method of ε-approximation can be
used to construct sentinel sets for each of these classes. Unfortunately,
as we mentioned earlier, the worst-case bounds for ε-approximations
and sensitive approximations are not very attractive. We plan to
investigate if, using additional geometric insights, we can construct
near-linear size sentinel sets for these more general forms of cuts.
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[2] N. Alon and E. Győri. The number of small semispaces of a finite set of
points in the plane. J. Combin. Theory Ser. A 41, 154–157, 1986.

[3] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 2000.
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