Wireless Sensor Networks

Malini Bhandaru Comp 150-CB, Summer 2007

Course: http://www.cs.tufts.edu/comp/150CB ECS,Tufts University

Wireless Sensor Networks --- Welcome!!!

Everywhere!

- Deeply embedded, network enabled sensors (temperature, pressure, light, motion, vibration).
- The Economist article, May 2007

Diverse Applications!

monitoring earthquake-prone regions,
volcanoes, patient health, compost piles,
vineyards, vehicle movement, traffic, pollution
plumes, war zones ..

Applications: Vehicle Monitoring

- Sensors take magnetometer readings, localize object
- Communicate using geographic routing to base station
- Robust against node and radio link failure

Course Covers

- Wireless communication
- Focuses on Wireless Sensor Networks
 - Small, low power, wireless devices with sensors
 - Hands-on, develop a sensor net application
 - Research the state of the art

Course Outline – 3 parts

- Survey of Wireless Communication
 - radio communication, antennas, propagation
 - coding scheme, broadband, MAC
 - protocols: 802.11, Bluetooth, 802.15.4
- Research in Adhoc networks and TCP in mobile environments
- Wireless Sensor Networks
 - Applications
 - Support: operating system, security, power management, routing, localization, time synch

Class Goals

- Learn about wireless networks and sensor networks
- Read research papers
- Experiment with a real sensor network
- Do a project or write a paper (possibly survey) on an aspect of interest to you, perhaps publish.

Programming Project

- Goal learning the ropes of programming wireless sensor motes
 - Familiarize yourself with the mote kit
 - Learn to use the TinyOS operating system
 - Work in alone or in pairs
 - Code a simple multihop wireless protocol
 - Equipment from Prof. Hwa Chung, Tufts University.
 - Give yourself more ramp up time if you need to get comfortable with C programming.

Project Proposal

- Anything of interest to you related to the course
- Proposal 1-2 paragraphs due class-5 indicating what will be investigated and how to propose to go about it.
- Class 8 an update on project status
- Class 11 presentation, 20 mins + 5 mins for questions
- Paper summarizing your findings, 8-12 pages long.

Project Ideas

- Study Effects of packet loss on adhoc routing protocols
- Develop an improvement to an existing routing algorithm and test
- Develop a new energy management scheme for sensor networks
- Build a medical paging system
- Develop a security protocol for sharing information among "collaborating" nodes

Look - NO Wires!

- LAN telephone lines expensive infrastruture, construction. Mobile telephones revolutionized telecommunications
- Cheap wireless sensing and computing devices are like Mobile phones to LAN lines! Revolutionizing sensing and reacting. Possible to scatter sensors in dangerous and/difficult to reach terrains.

Deeply embedded-networks – why is it exciting?

- The ability to sense the environment and communicate -- temperature, pressure, vibrations, acoustic, light, humidity.
- Takes computing out of the lab into the real world. Ability to respond and adapt in a timely manner by analysing the sensed information. Increase safety.

Challenges

- Battery life, solar?
- Communication bandwidth (radio transmission is energy expensive).
- On board storage capacity limited (but getting cheaper current day flash cards pack it in)
- Commutation limitations
- Routing protocols (can't have large routing tables)
- Node failure, link failure (moving out of radio range or path loss)

Sensor Networks

- Integrates sensing, computing and communication
- Getting smaller, more capable and cheaper
 - goal smart dust, cheap enough to "scatter/coat"

Applications: Vehicle Tracking

- Sensors take magnetometer readings, localize objects
- Communicate position to base station using geographic routing
- Robust against link and node failures (many sensors, all connected)

Applications: Habitat Monitoring

- Habitat sensing, Duck Island
 - without disturbing the birds detect their presence (temperature, infrared wavelength and humidity)
 - determine breeding and migration habits

Application: Habitat Monitoring

Fig. 2. System architecture for habitat monitoring

Application: Habitat Monitoring

Fig. 3. Average daily losses in the network throughout the deployment. The gap in the second part of August corresponds to a database crash.

Fig. 4. Distribution of packet losses in a time slot. Statistically, the losses are not independently distributed.

Applications: Volcano Monitoring

Application: Volcano Sensing Architecture

Applications: Medical -- CodeBlue

- pulse, EKG (heart monitoring),
- accelerometer, gyroscope and electromyogram sensing for stroke patients

Applications: Medical

The Harvard Pluto Mote

- Designed for wearable applications
 - 3-axis accelerometer
 - Tiny rechargeable battery

Applications: Medical

Pulse oximeter

Two-lead EKG

Harvard wireless vital sign sensors

- Vital sign data encrypted over radio
- About 30mA current consumption without duty cycling optimizations

Applications: Medical

The CodeBlue Network Infrastructure

congestion

Applications: Medical, Real-time patient Monitoring

Applications: Vineyard (1)

• Conserve water, improve quality of grape crop

Applications: Vineyard (2)

- At each Mote location:
 - 2 soil moisture sensors
 - 12" and 24" depth
 - 1 soil temp sensor to calibrate soil moisture sensors

Applications: Vineyard (3)

• Vineyard Mote prototype

Applications: Vineyard -- future

- Deer monitoring, Open Gates, Easement traffic.
- Wine storage temp
- Wine Making, Temps, CO2 level, flow
- Irrigation Control, remote valves.
- Green Home Monitoring; septic, heating
- Sensors embedded in the vines.
- Database costs, Web UI

Application: Compost Monitoring

- Removable wireless temperature and humidity sensing, easier on operators!
- Determine when to water, air (cool),

Application: Building Monitoring

- Air conditioning when school out of session
- Better thermostat control without expensive infrastructure

Application: Water Treatment

- Huge concrete tanks
- Lots of metal pipes
- Multiple floors
- Install tooks hours (instead of days)
- Repeaters easy to add.
- Mesh network

