
Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

19
Databases, SQL and

ADO.NET

Objectives
• To understand the relational database model.
• To understand basic database queries using

Structured Query Language (SQL).
• To use the classes and interfaces of namespace
System.Data to manipulate databases.

• To understand and use ADO.NET’s disconnected
model.

• To use the classes and interfaces of namespace
System.Data.OleDb.

It is a capital mistake to theorize before one has data.
Arthur Conan Doyle

Now go, write it before them in a table, and note it in a book,
that it may be for the time to come for ever and ever.
The Holy Bible: The Old Testament

Let's look at the record.
Alfred Emanuel Smith

Get your facts first, and then you can distort them as much as
you please.
Mark Twain

I like two kinds of men: domestic and foreign.
Mae West

1324 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

19.1 Introduction
A database is a collection of data. There are many different strategies for organizing data
to facilitate easy access and manipulation of the data. A database management system
(DBMS) provides mechanisms for storing and organizing data in a manner consistent with
the database’s format. Database management systems allow for the access and storage of
data without worrying about the internal representation of databases.

Today’s most popular database systems are relational databases. A language called
Structured Query Language (SQL—pronounced as its individual letters or as “sequel”) is
used almost universally with relational database systems to perform queries (i.e., to request
information that satisfies given criteria) and to manipulate data. [Note: The writing in this

Outline

19.1 Introduction
19.2 Relational Database Model
19.3 Relational Database Overview: The Books Database
19.4 Structured Query Language (SQL)

19.4.1 Basic SELECT Query
19.4.2 WHERE Clause
19.4.3 ORDER BY Clause
19.4.4 Merging Data from Multiple Tables: INNER JOIN
19.4.5 Joining Data from Tables Authors, AuthorISBN, Titles

and Publishers

19.4.6 INSERT Statement
19.4.7 UPDATE Statement
19.4.8 DELETE Statement

19.5 ADO.NET Object Model
19.6 Programming with ADO.NET: Extracting Information from a DBMS

19.6.1 Connecting to and Querying an Access Data Source
19.6.2 Querying the Books Database

19.7 Programming with ADO.NET: Modifying a DBMS
19.8 Reading and Writing XML Files

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Bibliography

Chapter 19 Databases, SQL and ADO.NET 1325

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

chapter assumes that SQL is pronounced as its individual letters. For this reason, we often
precede SQL with the article “an” as in “an SQL database” or “an SQL statement.”]

Some popular enterprise-level relational database systems include Microsoft SQL
Server, Oracle™, Sybase™, DB2™, Informix™ and MySQL™. In this chapter, we
present examples using Microsoft Access—a relational database system that comes with
Microsoft Office.

A programming language connects to, and interacts with, relational databases via an
interface—software that facilitates communications between a database management
system and a program. C# programmers communicate with databases and manipulate their
data using the next generation of Microsoft ActiveX Data Objects™ (ADO), ADO.NET.
This development framework is a disconnected model and uses XML for data transmis-
sions to achieve interoperability with other platforms.

19.2 Relational Database Model
The relational database model is a logical representation of data that allows the relation-
ships between the data to be considered without concern for the physical structure of the
data. A relational database is composed of tables. Figure 19.1 illustrates a sample table that
might be used in a personnel system. The table name is Employee and its primary purpose
is to illustrate the specific attributes of an employee. A particular row of the table is called
a record (or row). This table consists of six records. The number field (or column) of each
record in the table is the primary key for referencing data in the table. A primary key is a
field (or fields) in a table that contain(s) unique data that cannot be duplicated in other
records of that table. This guarantees each record can be identified by a unique value. Ex-
amples of primary-key fields are a social security number, an employee ID and a part num-
ber in an inventory system. The records of Fig. 19.1 are ordered by primary key. In this
case, the records are in increasing order (decreasing order could be used).

Each column of the table represents a different field (or column or attribute). Records
normally are unique (by primary key) within a table, but particular field values may be
duplicated between records. For example, three different records in the Employee table’s
Department field contain the number 413.

Fig. 19.1 Relational database structure of an Employee table.

number name department salary location

23603 Jones 413 1100 New Jersey

24568 Kerwin 413 2000 New Jersey

34589 Larson 642 1800 Los Angeles

35761 Myers 611 1400 Orlando

47132 Neumann 413 9000 New Jersey

78321 Stephens 611 8500 Orlando

Row/Record

Column/FieldPrimary key

1326 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Different users of a database often are interested in different data and different rela-
tionships among those data. Some users require only subsets of the table columns. To
obtain table subsets, we use SQL statements to specify the data to select from a table. SQL
provides a complete set of commands (including SELECT) that enable programmers to
define complex queries to select data from a table. The results of a query commonly are
called result sets (or record sets). For example, we might select data from the table in
Fig. 19.1 to create a new result set that shows the location of each department. This result
set appears in Fig. 19.2. SQL queries are discussed in Section 19.4.

19.3 Relational Database Overview: The Books Database
This section gives an overview of SQL in the context of a sample Books database we cre-
ated for this chapter. Before we discuss SQL, we overview the tables of the Books data-
base. We use this to introduce various database concepts, including the use of SQL to
obtain useful information from the database and to manipulate the database. We provide a
script to create the database. You can find the script in the examples directory for this chap-
ter on the CD that accompanies this book. Section 19.6 explains how to use this script.

The database consists of four tables: Authors, Publishers, AuthorISBN and
Titles. The Authors table (described in Fig. 19.3) consists of three fields (or columns)
that maintain each author’s unique ID number, first name and last name. Figure 19.4 con-
tains the data from the Authors table of the Books database.

Fig. 19.2 Result set formed by selecting Department and Location data
from the Employee table.

Field Description

authorID Author’s ID number in the database. In the Books database, this integer field is
defined as an autoincremented field. For each new record inserted in this table,
the database automatically increments the authorID value to ensure that each
record has a unique authorID. This field represents the table’s primary key.

firstName Author’s first name (a string).

lastName Author’s last name (a string).

Fig. 19.3 Authors table from Books.

department location

413 New Jersey

642 Los Angeles

611 Orlando

Chapter 19 Databases, SQL and ADO.NET 1327

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

The Publishers table (described in Fig. 19.5) consists of two fields representing
each publisher’s unique ID and name. Figure 19.6 contains the data from the Pub-
lishers table of the Books database.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

Fig. 19.4 Data from the Authors table of Books.

Field Description

publisherID The publisher’s ID number in the database. This autoincremented integer
is the table’s primary-key field.

publisherName The name of the publisher (a string).

Fig. 19.5 Publishers table from Books.

publisherID publisherName

1 Prentice Hall

2 Prentice Hall PTG

Fig. 19.6 Data from the Publishers table of Books.

1328 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

The AuthorISBN table (described in Fig. 19.7) consists of two fields that maintain
each ISBN number and its corresponding author’s ID number. This table helps associate
the names of the authors with the titles of their books. Figure 19.8 contains the data from
the AuthorISBN table of the Books database. ISBN is an abbreviation for “International
Standard Book Number”—a numbering scheme with which publishers worldwide give
every book a unique identification number. [Note: To save space, we have split the contents
of this figure into two columns, each containing the authorID and isbn fields.]

Field Description

authorID The author’s ID number, which allows the database to associate each
book with a specific author. The integer ID number in this field must
also appear in the Authors table.

isbn The ISBN number for a book (a string).

Fig. 19.7 AuthorISBN table from Books.

authorID isbn authorID isbn

1 0130895725 2 0139163050

1 0132261197 2 013028419x

1 0130895717 2 0130161438

1 0135289106 2 0130856118

1 0139163050 2 0130125075

1 013028419x 2 0138993947

1 0130161438 2 0130852473

1 0130856118 2 0130829277

1 0130125075 2 0134569555

1 0138993947 2 0130829293

1 0130852473 2 0130284173

1 0130829277 2 0130284181

1 0134569555 2 0130895601

1 0130829293 3 013028419x

1 0130284173 3 0130161438

1 0130284181 3 0130856118

1 0130895601 3 0134569555

2 0130895725 3 0130829293

Fig. 19.8 Portion of data from table AuthorISBN in database Books.

Chapter 19 Databases, SQL and ADO.NET 1329

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

The Titles table (described in Fig. 19.9) consists of six fields that maintain general
information about each book in the database, including the ISBN number, title, edition
number, copyright year, publisher’s ID number, name of a file containing an image of the
book cover, and finally, the price. Figure 19.10 contains the data from the Titles table.

2 0132261197 3 0130284173

2 0130895717 3 0130284181

2 0135289106 4 0130895601

Field Description

isbn ISBN number of the book (a string).

title Title of the book (a string).

editionNumber Edition number of the book (an integer).

copyright Copyright year of the book (a string).

publisherID Publisher’s ID number (an integer). This value must correspond to an ID
number in the Publishers table.

imageFile Name of the file containing the book’s cover image (a string).

price Suggested retail price of the book (a real number). [Note: The prices
shown in this book are for example purposes only.]

Fig. 19.9 Titles table from Books.

isbn title
edition
-Number

publish
-erID

copy
-
righ
t imageFile

pric
e

013092361
3

Python How to
Program

1 1 2002 python.jpg $69.95

013062221
4

C# How to Pro-
gram

1 1 2002 cshtp.jpg $69.95

Fig. 19.10 Data from the Titles table of Books (part 1 of 4).

authorID isbn authorID isbn

Fig. 19.8 Portion of data from table AuthorISBN in database Books.

1330 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

013034151
7

Java How to Pro-
gram

4 1 2002 jhtp4.jpg $69.95

013064934
1

The Complete Java
Training Course

4 2 2002 javactc4.jp
g

$109.95

013089560
1

Advanced Java 2
Platform How to
Program

1 1 2002 advjhtp1.jp
g

$69.95

013030897
8

Internet and World
Wide Web How to
Program

2 1 2002 iw3htp2.jpg $69.95

013029363
6

Visual Basic .NET
How to Program

2 1 2002 vbnet.jpg $69.95

013089563
6

The Complete C++
Training Course

3 2 2001 cppctc3.jpg $109.95

013089551
2

The Complete e-
Business & e-Com-
merce Program-
ming Training
Course

1 2 2001 ebecctc.jpg $109.95

013089561
X

The Complete
Internet & World
Wide Web Pro-
gramming Train-
ing Course

2 2 2001 iw3ctc2.jpg $109.95

013089554
7

The Complete Perl
Training Course

1 2 2001 perl.jpg $109.95

013089556
3

The Complete
XML Program-
ming Training
Course

1 2 2001 xmlctc.jpg $109.95

013089572
5

C How to Program 3 1 2001 chtp3.jpg $69.95

013089571
7

C++ How to Pro-
gram

3 1 2001 cpphtp3.jpg $69.95

013028419
X

e-Business and e-
Commerce How to
Program

1 1 2001 ebechtp1.jp
g

$69.95

013062226
5

Wireless Internet
and Mobile Busi-
ness How to Pro-
gram

1 1 2001 wire-
less.jpg

$69.95

013028418
1

Perl How to Pro-
gram

1 1 2001 perlhtp1.jp
g

$69.95

isbn title
edition
-Number

publish
-erID

copy
-
righ
t imageFile

pric
e

Fig. 19.10 Data from the Titles table of Books (part 2 of 4).

Chapter 19 Databases, SQL and ADO.NET 1331

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

013028417
3

XML How to Pro-
gram

1 1 2001 xmlhtp1.jpg $69.95

013085611
8

The Complete
Internet and World
Wide Web Pro-
gramming Train-
ing Course

1 2 2000 iw3ctc1.jpg $109.95

013012507
5

Java How to Pro-
gram (Java 2)

3 1 2000 jhtp3.jpg $69.95

013085248
1

The Complete Java
2 Training Course

3 2 2000 javactc3.jp
g

$109.95

013032364
0

e-Business and e-
Commerce for
Managers

1 1 2000 ebecm.jpg $69.95

013016143
8

Internet and World
Wide Web How to
Program

1 1 2000 iw3htp1.jpg $69.95

013013249
7

Getting Started
with Visual C++ 6
with an Introduc-
tion to MFC

1 1 1999 gsvc.jpg $49.95

013082929
3

The Complete
Visual Basic 6
Training Course

1 2 1999 vbctc1.jpg $109.95

013456955
5

Visual Basic 6
How to Program

1 1 1999 vbhtp1.jpg $69.95

013271974
6

Java Multimedia
Cyber Classroom

1 2 1998 javactc.jpg $109.95

013632589
0

Java How to Pro-
gram

1 1 1998 jhtp1.jpg $0.00

013916305
0

The Complete C++
Training Course

2 2 1998 cppctc2.jpg $109.95

013528910
6

C++ How to Pro-
gram

2 1 1998 cpphtp2.jpg $49.95

013790569
6

The Complete Java
Training Course

2 2 1998 javactc2.jp
g

$109.95

013082927
7

The Complete Java
Training Course
(Java 1.1)

2 2 1998 javactc2.jp
g

$99.95

013899394
7

Java How to Pro-
gram (Java 1.1)

2 1 1998 jhtp2.jpg $49.95

isbn title
edition
-Number

publish
-erID

copy
-
righ
t imageFile

pric
e

Fig. 19.10 Data from the Titles table of Books (part 3 of 4).

1332 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Figure 19.11 illustrates the relationships among the tables in the Books database. The
first line in each table is the table’s name. The field name in italic contains that table’s pri-
mary key. A table’s primary key uniquely identifies each record in the table. Every record
must have a value in the primary-key field, and the value must be unique. This is known as
the Rule of Entity Integrity. Note that the AuthorISBN has two fields in italic. This indicates
that these two fields form a compound primary key—each record in the table must have a
unique authorID and isbn combination. For example, there may exist several records
with an authorID of 2 and several records with an isbn of 0130895601, but only one
record can have an authorID of 2 and an isbn of 0130895601.

Common Programming Error 19.1
Not providing a value for a primary-key field in every record breaks the Rule of Entity Integ-
rity and causes the DBMS to report an error. 19.1

Common Programming Error 19.2
Providing duplicate values for the primary-key field in multiple records causes the DBMS to
report an error. 19.2

013117334
0

C++ How to Pro-
gram

1 1 1994 cpphtp1.jpg $69.95

013226119
7

C How to Program 2 1 1994 chtp2.jpg $49.95

013118043
6

C How to Program 1 1 1992 chtp.jpg $69.95

Fig. 19.11 Table relationships in Books.

isbn title
edition
-Number

publish
-erID

copy
-
righ
t imageFile

pric
e

Fig. 19.10 Data from the Titles table of Books (part 4 of 4).

AuthorISBN

authorID

isbn

Authors

authorID

firstName

lastName

Publishers

publisherID

publisherName

Titles

isbn

title

editionNumber

copyright

publisherID

imageFile

price

1 ∞ 1

∞

1
∞

Chapter 19 Databases, SQL and ADO.NET 1333

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

The lines connecting the tables in Fig. 19.11 represent the relationships between the
tables. Consider the line between the Publishers and Titles tables. On the Pub-
lishers end of the line, there is a 1, and on the Titles end, there is an infinity (∞)
symbol, indicating a one-to-many relationship in which every publisher in the Pub-
lishers table can have an arbitrarily large number of books in the Titles table. Note
that the relationship line links the publisherID field in the table Publishers to the
publisherID field in table Titles. The publisherID field in the Titles table is
a foreign key—a field for which every entry has a unique value in another table and where
the field in the other table is the primary key for that table (e.g., publisherID in the
Publishers table). Foreign keys are specified when creating a table. The foreign key
helps maintain the Rule of Referential Integrity: Every foreign key-field value must appear
in another table’s primary-key field. Foreign keys enable information from multiple tables
to be joined together for analysis purposes. There is a one-to-many relationship between a
primary key and its corresponding foreign key. This means that a foreign key-field value
can appear many times in its own table, but can only appear once as the primary key of
another table. The line between the tables represents the link between the foreign key in one
table and the primary key in another table.

Common Programming Error 19.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error. 19.3

The line between the AuthorISBN and Authors tables indicates that for each
author in the Authors table, there can be an arbitrary number of ISBNs for books written
by that author in the AuthorISBN table. The authorID field in the AuthorISBN table
is a foreign key of the authorID field (the primary key) of the Authors table. Note
again that the line between the tables links the foreign key of table AuthorISBN to the
corresponding primary key in table Authors. The AuthorISBN table links information
in the Titles and Authors tables.

Finally, the line between the Titles and AuthorISBN tables illustrates a one-to-
many relationship; a title can be written by any number of authors. In fact, the sole purpose
of the AuthorISBN table is to represent a many-to-many relationship between the
Authors and Titles tables; an author can write any number of books and a book can
have any number of authors.

19.4 Structured Query Language (SQL)
In this section, we provide an overview of Structured Query Language (SQL) in the context
of our Books sample database. You will be able to use the SQL queries discussed here in
the examples later in the chapter.

We discuss the SQL keywords of Fig. 19.12 in the contexts of complete SQL queries
in the next several subsections—other SQL keywords are beyond the scope of this text.

1334 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

[Note: For more information on SQL, please refer to the bibliography at the end of this
chapter.]

19.4.1 Basic SELECT Query
Let us consider several SQL queries that extract information from database Books. A typ-
ical SQL query “selects” information from one or more tables in a database. Such selections
are performed by SELECT queries. The simplest format of a SELECT query is

SELECT * FROM tableName

In this query, the asterisk (*) indicates that all columns from the tableName table of the da-
tabase should be selected. For example, to select the entire contents of the Authors table
(i.e., all the data in Fig. 19.13), use the query

SELECT * FROM Authors

To select specific fields from a table, replace the asterisk (*) with a comma-separated
list of the field names to select. For example, to select only the fields authorID and
lastName for all rows in the Authors table use the query

SELECT authorID, lastName FROM Authors

This query returns the data in Fig. 19.13. [Note: If a field name contains spaces, it must be
enclosed in square brackets ([]) in the query. For example, if the field name is first
name, the field name would appear in the query as [first name].]

SQL keyword Description

SELECT Select (retrieve) fields from one or more tables.

FROM Tables from which to get fields or delete records. Required in every
SELECT and DELETE.

WHERE Criteria for selection that determine the rows to be retrieved.

INNER JOIN Join records from multiple tables to produce a single set of records.

GROUP BY Criteria for grouping records.

ORDER BY Criteria for ordering records.

INSERT Insert data into a specified table.

UPDATE Update data in a specified table

DELETE Delete data from a specified table.

Fig. 19.12 SQL query keywords.

Chapter 19 Databases, SQL and ADO.NET 1335

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

] Common Programming Error 19.4
If a program assumes that the fields in a result set are always returned in the same order
from an SQL statement that uses the asterisk (*) to select fields, the program could process
the result set incorrectly. If the field order in the database table(s) changes, the order of the
fields in the result set would change accordingly. 19.4

Performance Tip 19.1
If the order of fields in a result set is unknown to a program, the program must process the
fields by name. This could require a linear search of the field names in the result set. Speci-
fying the field names to select from a table (or several tables) enables the application receiv-
ing the result set to know the order of the fields in advance. In this case, the program can
process the data more efficiently, because fields can be accessed directly by column number. 19.1

19.4.2 WHERE Clause
In most cases, it is necessary to locate records in a database that satisfy certain selection
criteria. Only records that match the selection criteria are selected. SQL uses the optional
WHERE clause in a SELECT query to specify the selection criteria for the query. The sim-
plest format of a SELECT query with selection criteria is

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

For example, to select the title, editionNumber and copyright fields from those
rows of table Titles, where the copyright date is greater than 1999, use the query

SELECT title, editionNumber, copyright

authorID lastName

1 Deitel

2 Deitel

3 Nieto

4 Steinbuhler

5 Santry

6 Lin

7 Sadhu

8 McPhie

9 Yaeger

10 Zlatkina

11 Wiedermann

12 Liperi

Fig. 19.13 authorID and lastName from the Authors table.

1336 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

FROM Titles
WHERE copyright > 1999

Figure 19.14 shows the results of the preceding query. [Note: When we construct a query
for use in C#, we will simply create a String containing the entire query. When we dis-
play queries in the text, we often use multiple lines and indentation for readability.]

Title editionNumber copyright

Internet and World Wide Web How to Program 2 2002

Java How to Program 4 2002

The Complete Java Training Course 4 2002

The Complete e-Business & e-Commerce Programming
Training Course

1 2001

The Complete Internet & World Wide Web Program-
ming Training Course

2 2001

The Complete Perl Training Course 1 2001

The Complete XML Programming Training Course 1 2001

C How to Program 3 2001

C++ How to Program 3 2001

The Complete C++ Training Course 3 2001

e-Business and e-Commerce How to Program 1 2001

Internet and World Wide Web How to Program 1 2000

The Complete Internet and World Wide Web Program-
ming Training Course

1 2000

Java How to Program (Java 2) 3 2000

The Complete Java 2 Training Course 3 2000

XML How to Program 1 2001

Perl How to Program 1 2001

Advanced Java 2 Platform How to Program 1 2002

e-Business and e-Commerce for Managers 1 2000

Wireless Internet and Mobile Business How to Program 1 2001

C# How To Program 1 2002

Python How to Program 1 2002

Visual Basic .NET How to Program 2 2002

Fig. 19.14 Titles with copyrights after 1999 from table Titles.

Chapter 19 Databases, SQL and ADO.NET 1337

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Performance Tip 19.2
Using selection criteria improves performance by selecting a portion of the database that is
normally smaller than the entire database. Working with a smaller portion of the data is
more efficient than working with the entire set of data stored in the database. 19.2

The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE.
Operator LIKE is used for pattern matching with wildcard characters asterisk (*) and ques-
tion mark (?). Pattern matching allows SQL to search for similar strings that “match a pat-
tern.”

A pattern that contains an asterisk (*) searches for strings that have zero or more char-
acters at the asterisk character’s position in the pattern. For example, the following query
locates the records of all the authors whose last names start with the letter D:

SELECT authorID, firstName, lastName
FROM Authors
WHERE lastName LIKE 'D*'

The preceding query selects the two records shown in Fig. 19.15, because two of the au-
thors in our database have last names starting with the letter D (followed by zero or more
characters). The * in the WHERE clause’s LIKE pattern indicates that any number of char-
acters can appear after the letter D in the lastName field. Notice that the pattern string is
surrounded by single-quote characters.

Portability Tip 19.1
Not all database systems support the LIKE operator, so be sure to read your database sys-
tem’s documentation carefully. 19.1

Portability Tip 19.2
Most databases use the % character in place of the * in a LIKE expression. 19.2

Portability Tip 19.3
In some databases, string data is case sensitive. 19.3

Portability Tip 19.4
In some databases, table names and field names are case sensitive. 19.4

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

Fig. 19.15 Authors whose last names start with D from the Authors table.

1338 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Good Programming Practice 19.1
By convention, SQL keywords should use all uppercase letters on systems that are not case
sensitive to emphasize the SQL keywords in an SQL statement. 19.1

A question mark (?) in the pattern string indicates a single character at that position
in the pattern. For example, the following query locates the records of all the authors whose
last names start with any character (specified with ?) followed by the letter i followed by
any number of additional characters (specified with *):

SELECT authorID, firstName, lastName
FROM Authors
WHERE lastName LIKE '?i*'

The preceding query produces the record in Fig. 19.16, because only one author in our da-
tabase has a last name that contains the letter i as its second letter.

Portability Tip 19.5
Most databases use the _ character in place of the ? in a LIKE expression. 19.5

19.4.3 ORDER BY Clause
The results of a query can be arranged in ascending or descending order with the optional
ORDER BY clause. The simplest form of an ORDER BY clause is

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and field specifies the field that determines the sorting order.

For example, to obtain the list of authors in ascending order by last name (Fig. 19.17),
use the query

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName ASC

Note that the default sorting order is ascending, so ASC is optional.

authorID firstName lastName

3 Tem Nieto

6 Ted Lin

11 Ben Wiedermann

12 Jonathan Liperi

Fig. 19.16 The authors from the Authors table whose last names contain i as
their second letter.

Chapter 19 Databases, SQL and ADO.NET 1339

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

To obtain the same list of authors in descending order by last name (Fig. 19.18), use
the query

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName DESC

authorID firstName lastName

2 Paul Deitel

1 Harvey Deitel

6 Ted Lin

12 Jonathan Liperi

8 David McPhie

3 Tem Nieto

7 Praveen Sadhu

5 Sean Santry

4 Kate Steinbuhler

11 Ben Wiedermann

9 Cheryl Yaeger

10 Marina Zlatkina

Fig. 19.17 Authors from table Authors in ascending order by lastName.

authorID firstName lastName

10 Marina Zlatkina

9 Cheryl Yaeger

11 Ben Wiedermann

4 Kate Steinbuhler

5 Sean Santry

7 Praveen Sadhu

3 Tem Nieto

8 David McPhie

12 Jonathan Liperi

6 Ted Lin

2 Paul Deitel

Fig. 19.18 Authors from table Authors in descending order by lastName.

1340 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Multiple fields can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY field1 sortingOrder, field2 sortingOrder, …

where sortingOrder is either ASC or DESC. Note that the sortingOrder does not have to be
identical for each field. The query

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName, firstName

sorts in ascending order all the authors by last name, then by first name. If any authors have
the same last name, their records are returned sorted by their first name (Fig. 19.19).

The WHERE and ORDER BY clauses can be combined in one query. For example, the
query

SELECT isbn, title, editionNumber, copyright, price
FROM Titles
WHERE title
LIKE '%How to Program' ORDER BY title ASC

1 Harvey Deitel

authorID firstName lastName

Fig. 19.18 Authors from table Authors in descending order by lastName.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

6 Ted Lin

12 Jonathan Liperi

8 David McPhie

3 Tem Nieto

7 Praveen Sadhu

5 Sean Santry

4 Kate Steinbuhler

11 Ben Wiedermann

9 Cheryl Yaeger

10 Marina Zlatkina

Fig. 19.19 Authors from tableAuthors in ascending order bylastName and by
firstName.

Chapter 19 Databases, SQL and ADO.NET 1341

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

returns the isbn, title, edition number, copyright and price of each book in the Titles ta-
ble that has a title ending with “How to Program” and lists them in ascending order
by title. The results of the query are shown in Fig. 19.20. In the figure, note that the title
“e-Business and e-Commerce How to Program” appears at the end of the list because da-
tabase systems often use Unicode numeric values of the characters for comparison purpos-
es. Remember that lowercase letters have larger numeric values than uppercase letters.

isbn title
edition-
Number

copy-
right price

0130895601 Advanced Java 2 Platform
How to Program

1 2002 $69.95

0131180436 C How to Program 1 1992 $69.95

0130895725 C How to Program 3 2001 $69.95

0132261197 C How to Program 2 1994 $49.95

0130622214 C# How To Program 1 2002 $69.95

0135289106 C++ How to Program 2 1998 $49.95

0131173340 C++ How to Program 1 1994 $69.95

0130895717 C++ How to Program 3 2001 $69.95

013028419X e-Business and e-Commerce
How to Program

1 2001 $69.95

0130308978 Internet and World Wide Web
How to Program

2 2002 $69.95

0130161438 Internet and World Wide Web
How to Program

1 2000 $69.95

0130341517 Java How to Program 4 2002 $69.95

0136325890 Java How to Program 1 1998 $0.00

0130284181 Perl How to Program 1 2001 $69.95

0130923613 Python How to Program 1 2002 $69.95

0130293636 Visual Basic .NET How to
Program

2 2002 $69.95

0134569555 Visual Basic 6 How to Pro-
gram

1 1999 $69.95

0130622265 Wireless Internet and Mobile
Business How to Program

1 2001 $69.95

0130284173 XML How to Program 1 2001 $69.95

Fig. 19.20 Books from table Titles whose titles end with How to Program in
ascending order by title.

1342 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

19.4.4 Merging Data from Multiple Tables: INNER JOIN
Often it is necessary to merge data from multiple tables into a single set of data for analysis
purposes. This is referred to as joining the tables and is accomplished using an INNER
JOIN operation in the SELECT query. An INNER JOINmerges records from two or more
tables by testing for matching values in a field that is common to both tables. The simplest
format of an INNER JOIN clause is

SELECT fieldName1, fieldName2, …
FROM table1
INNER JOIN table2

ON table1.fieldName = table2.fieldName

The ON part of the INNER JOIN clause specifies the fields from each table that should be
compared to determine which records to select. For example, the following query produces
a list of authors and the ISBN numbers for the books that each author wrote:

SELECT firstName, lastName, isbn
FROM Authors
INNER JOIN AuthorISBN

ON Authors.authorID = AuthorISBN.authorID
ORDER BY lastName, firstName

The query merges the firstName and lastName fields from table Authors and the
isbn field from table AuthorISBN and sorts the results in ascending order by last-
Name and firstName. Notice the use of the syntax tableName.fieldName in the ON part
of the INNER JOIN. This syntax (called a fully qualified name) specifies the fields from
each table that should be compared to join the tables. The “tableName.” syntax is required
if the fields have the same name in both tables. The same syntax can be used in a query to
distinguish fields in different tables that happen to have the same name. Fully qualified
names that start with the database name can be used to perform cross-database queries.

Software Engineering Observation 19.1
If an SQL statement uses fields with the same name from multiple tables, the statement must
qualify those field names with their table names and the dot operator (e.g., Authors.au-
thorID). 19.1

Common Programming Error 19.5
In a query, not providing fully-qualified names for fields with the same name from two or
more tables is an error. 19.1

Chapter 19 Databases, SQL and ADO.NET 1343

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

As always, the query can contain an ORDER BY clause. Figure 19.21 shows the results
of the preceding query. [Note: To save space, we split the results of the query into two col-
umns, each containing the firstName, lastName and isbn fields.]

19.4.5 Joining Data from Tables Authors, AuthorISBN, Titles
and Publishers
The Books database contains one predefined query (TitleAuthor) that produces a ta-
ble containing the book title, ISBN number, author’s first name, author’s last name, book’s
copyright year and publisher’s name for each book in the database. For books with multiple

firstName lastName isbn firstName lastName isbn

Harvey Deitel 0130895601 Paul Deitel 0134569555

Harvey Deitel 0130284181 Paul Deitel 0130829277

Harvey Deitel 0130284173 Paul Deitel 0130852473

Harvey Deitel 0130829293 Paul Deitel 0138993947

Harvey Deitel 0134569555 Paul Deitel 0130125075

Harvey Deitel 0130829277 Paul Deitel 0130856118

Harvey Deitel 0130852473 Paul Deitel 0130161438

Harvey Deitel 0138993947 Paul Deitel 013028419x

Harvey Deitel 0130125075 Paul Deitel 0139163050

Harvey Deitel 0130856118 Paul Deitel 0135289106

Harvey Deitel 0130161438 Paul Deitel 0130895717

Harvey Deitel 013028419x Paul Deitel 0132261197

Harvey Deitel 0139163050 Paul Deitel 0130895725

Harvey Deitel 0135289106 Tem Nieto 0130284181

Harvey Deitel 0130895717 Tem Nieto 0130284173

Harvey Deitel 0132261197 Tem Nieto 0130829293

Harvey Deitel 0130895725 Tem Nieto 0134569555

Paul Deitel 0130895601 Tem Nieto 0130856118

Paul Deitel 0130284181 Tem Nieto 0130161438

Paul Deitel 0130284173 Tem Nieto 013028419x

Paul Deitel 0130829293 Sean Santry 0130895601

Fig. 19.21 Portion of the authors and the ISBN numbers for the books they have
written in ascending order by lastName and firstName.

1344 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

authors, the query produces a separate composite record for each author. The TitleAu-
thor query is shown in Fig. 18.22. A portion of the query results are shown in Fig. 18.23.

1 SELECT Titles.title, Titles.isbn, Authors.firstName,
2 Authors.lastName, Titles.copyright,
3 Publishers.publisherName
4 FROM
5 (Publishers INNER JOIN Titles
6 ON Publishers.publisherID = Titles.publisherID)
7 INNER JOIN
8 (Authors INNER JOIN AuthorISBN
9 ON Authors.authorID = AuthorISBN.authorID)

10 ON Titles.isbn = AuthorISBN.isbn
11 ORDER BY Titles.title

Fig. 19.22 Joining tables to produce a result set in which each record contains an
author, title, ISBN number, copyright and publisher name.

Title isbn
first-
Name

last-
Name

copy-
right

publisher-
Name

Advanced Java 2 Platform
How to Program

0130895601 Paul Deitel 2002 Prentice Hall

Advanced Java 2 Platform
How to Program

0130895601 Harvey Deitel 2002 Prentice Hall

Advanced Java 2 Platform
How to Program

0130895601 Sean Santry 2002 Prentice Hall

C How to Program 0131180436 Harvey Deitel 1992 Prentice Hall

C How to Program 0131180436 Paul Deitel 1992 Prentice Hall

C How to Program 0132261197 Harvey Deitel 1994 Prentice Hall

C How to Program 0132261197 Paul Deitel 1994 Prentice Hall

C How to Program 0130895725 Harvey Deitel 2001 Prentice Hall

C How to Program 0130895725 Paul Deitel 2001 Prentice Hall

C# How To Program 0130622214 Tem Nieto 2002 Prentice Hall

C# How To Program 0130622214 Paul Deitel 2002 Prentice Hall

C# How To Program 0130622214 Cheryl Yaeger 2002 Prentice Hall

C# How To Program 0130622214 Marina Zlatkina 2002 Prentice Hall

C# How To Program 0130622214 Harvey Deitel 2002 Prentice Hall

C++ How to Program 0130895717 Paul Deitel 2001 Prentice Hall

C++ How to Program 0130895717 Harvey Deitel 2001 Prentice Hall

C++ How to Program 0131173340 Paul Deitel 1994 Prentice Hall

Fig. 19.23 Portion of the result set produced by the query in Fig. 19.22.

Chapter 19 Databases, SQL and ADO.NET 1345

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

The indentation in the query of Fig. 19.22 is simply to make the query more readable.
Let us now break down the query into its various parts. Lines 1 through 3 indicate the fields
that will be returned by the query and their order in the returned table from left to right. This
query will select fields title and isbn from table Titles, fields firstName and
lastName from table Authors, field copyright from table Titles table and field
publisherName from table Publishers. For the purpose of this query, we fully qual-
ified each field name with its table name (e.g., Titles.isbn).

Lines 4 through 10 specify the INNER JOIN operations that combine information
from the tables. Notice that there are three INNER JOIN operations. Remember that an
INNER JOIN is performed on two tables. It is important to note that either of those two
tables can be the result of another query or another INNER JOIN. Parentheses are used to
nest the INNER JOIN operations and the parentheses are evaluated from the innermost set
of parentheses first. We begin with the INNER JOIN

(Publishers INNER JOIN Titles
ON Publishers.publisherID = Titles.publisherID)

which joins the Publishers table and the Titles table ON the condition that the pub-
lisherID number in each table matches. The resulting temporary table contains all the
information about each book and the publisher that published it.

Moving to the other nested set of parentheses, the INNER JOIN

(Authors INNER JOIN AuthorISBN ON
Authors.AuthorID = AuthorISBN.AuthorID)

C++ How to Program 0131173340 Harvey Deitel 1994 Prentice Hall

C++ How to Program 0135289106 Harvey Deitel 1998 Prentice Hall

C++ How to Program 0135289106 Paul Deitel 1998 Prentice Hall

e-Business and e-Commerce
for Managers

0130323640 Harvey Deitel 2000 Prentice Hall

e-Business and e-Commerce
for Managers

0130323640 Kate Stein-
buhler

2000 Prentice Hall

e-Business and e-Commerce
for Managers

0130323640 Paul Deitel 2000 Prentice Hall

e-Business and e-Commerce
How to Program

013028419
X

Harvey Deitel 2001 Prentice Hall

e-Business and e-Commerce
How to Program

013028419
X

Paul Deitel 2001 Prentice Hall

e-Business and e-Commerce
How to Program

013028419
X

Tem Nieto 2001 Prentice Hall

Title isbn
first-
Name

last-
Name

copy-
right

publisher-
Name

Fig. 19.23 Portion of the result set produced by the query in Fig. 19.22.

1346 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

joins the Authors table and the AuthorISBN table ON the condition that the author-
ID field in each table matches. Remember that the AuthorISBN table may have multiple
entries for each ISBN number if there is more than one author for that book.

Next, the INNER JOIN

(Publishers INNER JOIN Titles
ON Publishers.publisherID = Titles.publisherID)

INNER JOIN
(Authors INNER JOIN AuthorISBN

ON Authors.authorID = AuthorISBN.authorID)
ON Titles.isbn = AuthorISBN.isbn

joins the two temporary tables produced by the prior inner joins ON the condition that the
Titles.isbn field in the first temporary table matches the AuthorISBN.isbn field
in the second temporary table. The result of all these INNER JOIN operations is a tempo-
rary table from which the appropriate fields are selected for the results of this query.

Finally, line 11 of the query

ORDER BY Titles.title

indicates that all the titles should be sorted in ascending order (the default).

19.4.6 INSERT Statement
The INSERT statement inserts a new record in a table. The simplest form of this statement
is

INSERT INTO tableName (fieldName1, fieldName2, …, fieldNameN)
VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the record. The tableName is followed by
a comma-separated list of field names in parentheses. (This list is not required if the IN-
SERT INTO operation specifies a value for every column of the table in the correct order.)
The list of field names is followed by the SQL keyword VALUES and a comma-separated
list of values in parentheses. The values specified here should match the field names spec-
ified after the table name in order and type (i.e., if fieldName1 is supposed to be the
firstName field, then value1 should be a string in single quotes representing the first
name). The INSERT statement

INSERT INTO Authors (firstName, lastName)
VALUES ('Sue', 'Smith')

inserts a record into the Authors table. The statement indicates that values will be insert-
ed for the firstName and lastName fields. The corresponding values to insert are
'Sue' and 'Smith'. We do not specify an authorID in this example, because au-
thorID is an auto-increment field in the database. Every new record added to this table,
has a unique authorID value that is the next value in the auto-increment sequence (i.e.,
1, 2, 3 etc.) assigned to it. In this case, Sue Smith would be assigned authorID number
5. Figure 19.24 shows the Authors table after performing the INSERT operation.

Chapter 19 Databases, SQL and ADO.NET 1347

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Common Programming Error 19.6
SQL statements use the single quote (') character as a delimiter for strings. To specify a
string containing a single quote (such as O’Malley) in an SQL statement, the string must
have two single quotes in the position where the single-quote character appears in the string
(e.g., 'O''Malley'). The first of the two single-quote characters acts as an escape char-
acter for the second. Not escaping single-quote characters in a string that is part of an SQL
statement is an SQL syntax error. 19.6

19.4.7 UPDATE Statement
An UPDATE statement modifies data in a table. The simplest form for an UPDATE state-
ment is

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is
followed by keyword SET and a comma-separated list of field name/value pairs in the for-
mat fieldName = value. The WHERE clause specifies the criteria used to determine which
record(s) to update. The UPDATE statement

UPDATE Authors
SET lastName = 'Jones'
WHERE lastName = 'Smith' AND firstName = 'Sue'

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Sue Smith

Fig. 19.24 Table Authors after an INSERT INTO operation to add a record.

1348 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

updates a record in the Authors table. The statement indicates that the lastName will
be assigned the value Jones for the record in which lastName is equal to Smith and
firstName is equal to Sue. If we know the authorID in advance of the UPDATE op-
eration (possibly because we searched for the record previously), the WHERE clause could
be simplified as follows:

WHERE AuthorID = 5

Figure 19.25 shows the Authors table after performing the UPDATE operation.

Common Programming Error 19.7
Not using aWHERE clause with anUPDATE orDELETE statement could lead to logic errors. 19.7

19.4.8 DELETE Statement
An SQL DELETE statement removes data from a table. The simplest form for a DELETE
statement is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE clause
specifies the criteria used to determine which record(s) to delete. The DELETE statement

DELETE FROM Authors
WHERE lastName = 'Jones' AND firstName = 'Sue'

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Sue Jones

Fig. 19.25 Table Authors after an UPDATE operation to change a record.

Chapter 19 Databases, SQL and ADO.NET 1349

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

deletes the record for Sue Jones in the Authors table. If we know the authorID in ad-
vance of the DELETE operation, the WHERE clause could be simplified as follows:

WHERE authorID = 13

Figure 19.26 shows the Authors table after the DELETE operation.

19.5 ADO.NET Object Model
The ADO.NET object model provides an API for accessing database systems programmat-
ically. ADO.NET was created for the .NET framework and is the next generation of Ac-
tiveX Data Objects™ (ADO), which was designed to interact with Microsoft’s Component
Object Model™ (COM) framework.

The primary namespaces for ADO.NET are System.Data,
System.Data.OleDb and System.Data.SqlClient. These namespaces contain
classes for working with databases and other types of datasources (e.g., XML files). The
System.Data namespace is the root namespace for the ADO.NET API. Namespaces
System.Data.OleDb and System.Data.SqlClient contain classes that enable
programs to connect with and modify datasources. The System.Data.OleDb
namespace contains classes that are designed to work with any datasource, whereas the
System.Data.SqlClient namespace contains classes that are optimized to work
with Microsoft SQL Server 2000 databases.

Class System.Data.DataSet, which consists of a set of DataTables and rela-
tionships among those DataTables, represents a cache of data—data that a program
stores temporarily in local memory. The structure of a DataSet mimics the structure of a
relational database. An advantage of using class DataSet is that it is disconnected—the

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

Fig. 19.26 Table Authors after a DELETE operation to remove a record.

1350 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

program does not need a persistent connection to the datasource to work with data in a
DataSet. The program connects to the datasource only to populate the DataSet initially
and to store any changes made in the DataSet. Hence, no active, permanent connection
to the datasource is required.

Class OleDbConnection of namespace System.Data.OleDb represents a
connection to a datasource. Class OleDbDataAdapter connects to a datasource using
an instance of class OleDbConnection and can populate DataSets with data from a
datasource. We discuss the details of creating and populating DataSets later in this
chapter.

Class OleDbCommand of namespace System.Data.OleDb represents an arbi-
trary SQL command to be executed on a datasource. A program can use instances of class
OleDbCommand to manipulate a datasource through an OleDbConnection. The
active connection to the datasource must be closed explicitly once no further changes are
to be made. Unlike DataSets, OleDbCommand objects do not cache data in local
memory.

19.6 Programming with ADO.NET: Extracting Information from a
DBMS
In this section, we present two examples that introduce how to connect to a database, query
the database and display the results of the query. The database used in these examples is the
Microsoft Access Books database. It can be found in the project directory for the applica-
tion of Fig. 19.27. Each program must specify the location of this database on the comput-
er’s hard drive. When executing these examples on your computer, be sure to update this
location in each program. For example, in Fig. 19.27, lines 69–78 must be changed so that
they specify the correct location of the database file before executing the program on your
computer.

19.6.1 Connecting to and Querying an Access Data Source
The first example (Fig. 19.27) performs a simple query on the Books database that re-
trieves the entire Authors table and displays the data in a DataGrid (a convenient
System.Windows.Forms component class that can display a datasource in a GUI).
The program illustrates connecting to the database, querying the database and displaying
the results in a DataGrid. The following discussion presents the key aspects of the pro-
gram. [Note: We present all of Visual Studio’s auto-generated code in Fig. 19.27. We in-
clude this code to show exactly what Visual Studio generates for the example in this
section.]

1 // Fig. 19.16: TableDisplay.cs
2 // Displays data from a database table.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;

Fig. 19.27 How to access and display a database’s data (part 1 of 7).

Chapter 19 Databases, SQL and ADO.NET 1351

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class TableDisplay : System.Windows.Forms.Form
12 {
13 private System.Data.OleDb.OleDbConnection oleDbConnection1;
14 private System.Data.DataSet dataSet1;
15 private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;
16 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
17 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
18 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
19 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
20 private System.Windows.Forms.DataGrid dataGrid1;
21 private System.ComponentModel.Container components = null;
22
23 public TableDisplay()
24 {
25 InitializeComponent();
26
27 // Fill dataSet1 with data
28 oleDbDataAdapter1.Fill(dataSet1, "Authors");
29
30 // Bind data in Users table in dataSet1 to dataGrid1
31 dataGrid1.SetDataBinding(dataSet1, "Authors");
32 }
33
34 private void InitializeComponent()
35 {
36 this.oleDbConnection1 =
37 new System.Data.OleDb.OleDbConnection();
38 this.dataSet1 = new System.Data.DataSet();
39 this.oleDbDataAdapter1 =
40 new System.Data.OleDb.OleDbDataAdapter();
41 this.oleDbSelectCommand1 =
42 new System.Data.OleDb.OleDbCommand();
43 this.oleDbInsertCommand1 =
44 new System.Data.OleDb.OleDbCommand();
45 this.oleDbUpdateCommand1 =
46 new System.Data.OleDb.OleDbCommand();
47 this.oleDbDeleteCommand1 =
48 new System.Data.OleDb.OleDbCommand();
49 this.dataGrid1 = new System.Windows.Forms.DataGrid();
50 ((System.ComponentModel.ISupportInitialize)
51 (this.dataSet1)).BeginInit();
52 ((System.ComponentModel.ISupportInitialize)
53 (this.dataGrid1)).BeginInit();
54 this.SuspendLayout();
55
56 //
57 // oleDbConnection1
58 //
59 this.oleDbConnection1.ConnectionString =
60 @"Provider=Microsoft.Jet.OLEDB.4.0;Password="""";

Fig. 19.27 How to access and display a database’s data (part 2 of 7).

1352 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

61 User ID=Admin;Data Source=C:\Documents
62 and Settings\david\Desktop
63 \mod\ch19\beta2versions\data\
64 Books.mdb;Mode=ReadWrite;
65 Extended Properties="""";
66 Jet OLEDB:System database="""";
67 Jet OLEDB:Registry Path="""";
68 Jet OLEDB:Database Password="""";
69 Jet OLEDB:Engine Type=5;
70 Jet OLEDB:Database Locking Mode=1;
71 Jet OLEDB:Global Partial Bulk Ops=2;
72 Jet OLEDB:Global Bulk Transactions=1;
73 Jet OLEDB:New Database Password="""";
74 Jet OLEDB:Create System Database=False;
75 Jet OLEDB:Encrypt Database=False;
76 Jet OLEDB:Don't Copy Locale on Compact=False;
77 Jet OLEDB:Compact Without Replica Repair=False;
78 Jet OLEDB:SFP=False";
79
80 //
81 // dataSet1
82 //
83 this.dataSet1.DataSetName = "NewDataSet";
84 this.dataSet1.Locale =
85 new System.Globalization.CultureInfo("en-US");
86
87 //
88 // oleDbDataAdapter1
89 //
90 this.oleDbDataAdapter1.DeleteCommand =
91 this.oleDbDeleteCommand1;
92 this.oleDbDataAdapter1.InsertCommand =
93 this.oleDbInsertCommand1;
94 this.oleDbDataAdapter1.SelectCommand =
95 this.oleDbSelectCommand1;
96 this.oleDbDataAdapter1.TableMappings.AddRange(
97 new System.Data.Common.DataTableMapping[] {
98 new System.Data.Common.DataTableMapping(
99 "Table", "Authors",
100 new System.Data.Common.DataColumnMapping[] {
101 new System.Data.Common.DataColumnMapping
102 ("Number", "Number"),
103 new System.Data.Common.DataColumnMapping
104 ("First", "First"),
105 new System.Data.Common.DataColumnMapping
106 ("Last", "Last") }) }) ;
107 this.oleDbDataAdapter1.UpdateCommand =
108 this.oleDbUpdateCommand1;
109
110 //
111 // oleDbSelectCommand1
112 //
113 this.oleDbSelectCommand1.CommandText =
114 "SELECT First, Last, [Number] FROM Authors";

Fig. 19.27 How to access and display a database’s data (part 3 of 7).

Chapter 19 Databases, SQL and ADO.NET 1353

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

115 this.oleDbSelectCommand1.Connection = this.oleDbConnection1;
116
117 //
118 // oleDbInsertCommand1
119 //
120 this.oleDbInsertCommand1.CommandText =
121 "INSERT INTO Authors(First, Last, [Number]) " +
122 "VALUES (?, ?, ?); SELECT First, Last, [Number]" +
123 " FROM Authors WHERE ([Number] = ?)";
124 this.oleDbInsertCommand1.Connection = this.oleDbConnection1;
125 this.oleDbInsertCommand1.Parameters.Add(
126 new System.Data.OleDb.OleDbParameter(
127 "First", System.Data.OleDb.OleDbType.Char, 50,
128 System.Data.ParameterDirection.Input, false,
129 ((System.Byte) (0)),((System.Byte) (0)), "First",
130 System.Data.DataRowVersion.Current, null));
131 this.oleDbInsertCommand1.Parameters.Add(
132 new System.Data.OleDb.OleDbParameter(
133 "Last", System.Data.OleDb.OleDbType.Char, 50,
134 System.Data.ParameterDirection.Input, false,
135 ((System.Byte) (0)),((System.Byte) (0)), "Last",
136 System.Data.DataRowVersion.Current, null));
137 this.oleDbInsertCommand1.Parameters.Add(
138 new System.Data.OleDb.OleDbParameter(
139 "Number", System.Data.OleDb.OleDbType.Numeric, 0,
140 System.Data.ParameterDirection.Input, false,
141 ((System.Byte) (10)),((System.Byte) (0)), "Number",
142 System.Data.DataRowVersion.Current, null));
143 this.oleDbInsertCommand1.Parameters.Add(
144 new System.Data.OleDb.OleDbParameter(
145 "Select_Number", System.Data.OleDb.OleDbType.Numeric, 0,
146 System.Data.ParameterDirection.Input, false,
147 ((System.Byte) (10)),((System.Byte) (0)), "Number",
148 System.Data.DataRowVersion.Current, null));
149
150 //
151 // oleDbUpdateCommand1
152 //
153 this.oleDbUpdateCommand1.CommandText =
154 "UPDATE Authors SET First = ?," +
155 "Last = ?, [Number] = ? WHERE ([Number] = ?) AND (Fi" +
156 "rst = ?) AND (Last = ?); " +
157 "SELECT First, Last, [Number] FROM " +
158 "Authors WHERE ([Numbe" + "r] = ?) ";
159 this.oleDbUpdateCommand1.Connection = this.oleDbConnection1;
160 this.oleDbUpdateCommand1.Parameters.Add(
161 new System.Data.OleDb.OleDbParameter(
162 "First", System.Data.OleDb.OleDbType.Char, 50,
163 System.Data.ParameterDirection.Input, false,
164 ((System.Byte) (0)),((System.Byte) (0)), "First",
165 System.Data.DataRowVersion.Current, null));
166 this.oleDbUpdateCommand1.Parameters.Add(
167 new System.Data.OleDb.OleDbParameter(
168 "Last", System.Data.OleDb.OleDbType.Char, 50,

Fig. 19.27 How to access and display a database’s data (part 4 of 7).

1354 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

169 System.Data.ParameterDirection.Input, false,
170 ((System.Byte) (0)),((System.Byte) (0)), "Last",
171 System.Data.DataRowVersion.Current, null));
172 this.oleDbUpdateCommand1.Parameters.Add(
173 new System.Data.OleDb.OleDbParameter(
174 "Number", System.Data.OleDb.OleDbType.Numeric, 0,
175 System.Data.ParameterDirection.Input, false,
176 ((System.Byte) (10)),((System.Byte) (0)), "Number",
177 System.Data.DataRowVersion.Current, null));
178 this.oleDbUpdateCommand1.Parameters.Add(
179 new System.Data.OleDb.OleDbParameter(
180 "Original_Number", System.Data.OleDb.OleDbType.Numeric, 0,
181 System.Data.ParameterDirection.Input, false,
182 ((System.Byte) (10)),((System.Byte) (0)), "Number",
183 System.Data.DataRowVersion.Original, null));
184 this.oleDbUpdateCommand1.Parameters.Add(
185 new System.Data.OleDb.OleDbParameter(
186 "Original_First", System.Data.OleDb.OleDbType.Char, 50,
187 System.Data.ParameterDirection.Input, false,
188 ((System.Byte) (0)),((System.Byte) (0)), "First",
189 System.Data.DataRowVersion.Original, null));
190 this.oleDbUpdateCommand1.Parameters.Add(
191 new System.Data.OleDb.OleDbParameter(
192 "Original_Last", System.Data.OleDb.OleDbType.Char, 50,
193 System.Data.ParameterDirection.Input, false,
194 ((System.Byte) (0)),((System.Byte) (0)), "Last",
195 System.Data.DataRowVersion.Original, null));
196 this.oleDbUpdateCommand1.Parameters.Add(
197 new System.Data.OleDb.OleDbParameter(
198 "Select_Number", System.Data.OleDb.OleDbType.Numeric, 0,
199 System.Data.ParameterDirection.Input, false,
200 ((System.Byte) (10)),((System.Byte) (0)), "Number",
201 System.Data.DataRowVersion.Current, null));
202
203 //
204 // oleDbDeleteCommand1
205 //
206 this.oleDbDeleteCommand1.CommandText =
207 "DELETE FROM Authors WHERE ([Number] = ?) " +
208 "AND (First = ?) AND (Last = ?)";
209 this.oleDbDeleteCommand1.Connection = this.oleDbConnection1;
210 this.oleDbDeleteCommand1.Parameters.Add(
211 new System.Data.OleDb.OleDbParameter(
212 "Number", System.Data.OleDb.OleDbType.Numeric, 0,
213 System.Data.ParameterDirection.Input, false,
214 ((System.Byte) (10)),((System.Byte) (0)), "Number",
215 System.Data.DataRowVersion.Original, null));
216 this.oleDbDeleteCommand1.Parameters.Add(
217 new System.Data.OleDb.OleDbParameter(
218 "First", System.Data.OleDb.OleDbType.Char, 50,
219 System.Data.ParameterDirection.Input, false,
220 ((System.Byte) (0)),((System.Byte) (0)), "First",
221 System.Data.DataRowVersion.Original, null));
222 this.oleDbDeleteCommand1.Parameters.Add(

Fig. 19.27 How to access and display a database’s data (part 5 of 7).

Chapter 19 Databases, SQL and ADO.NET 1355

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

223 new System.Data.OleDb.OleDbParameter(
224 "Last", System.Data.OleDb.OleDbType.Char, 50,
225 System.Data.ParameterDirection.Input, false,
226 ((System.Byte) (0)),((System.Byte) (0)), "Last",
227 System.Data.DataRowVersion.Original, null));
228
229 //
230 // dataGrid1
231 //
232 this.dataGrid1.DataMember = "";
233 this.dataGrid1.Location = new System.Drawing.Point(16, 16) ;
234 this.dataGrid1.Name = "dataGrid1";
235 this.dataGrid1.Size = new System.Drawing.Size(264, 248);
236 this.dataGrid1.TabIndex = 0;
237
238 //
239 // TableDisplay
240 //
241 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
242 this.ClientSize = new System.Drawing.Size(292, 273);
243 this.Controls.AddRange(new System.Windows.Forms.Control[] {
244 this.dataGrid1 });
245 this.Name = "TableDisplay";
246 this.Text = "TableDisplay";
247 ((System.ComponentModel.ISupportInitialize)
248 (this.dataSet1)).EndInit();
249 ((System.ComponentModel.ISupportInitialize)
250 (this.dataGrid1)).EndInit();
251 this.ResumeLayout(false);
252
253 } // end of InitializeComponent
254
255 [STAThread]
256 static void Main()
257 {
258 Application.Run(new TableDisplay());
259 }
260 }

Fig. 19.27 How to access and display a database’s data (part 6 of 7).

1356 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

In this example, we use an Access database. To register the Books database as a data-
source, right click the Data Connections node in the Server Explorer and double click
<Add Connection>. In the Provider tab of the window that appears, choose
“Microsoft Jet 4.0 OLE DB Provider,” which is the driver for Access databases.
In the Connection tab, click the … button to the right of the textbox for the database
name, which opens the Select Access Database window. Go to the appropriate folder,
select the Books database then click OK. Now this database is listed as a connection in the
Server Explorer. Drag the database node onto the Windows Form. This creates an Ole-
DbConnection to the source, which the Windows Form designer shows as
oleDbConnection1.

Next, drag an OleDbDataAdapter from the Toolbox’s Data subheading onto the
Windows Form designer. This displays the Data Adapter Configuration Wizard for
configuring the OleDbDataAdapter instance with a custom query for populating a
DataSet. Click Next to select a connection to use. Select the connection created in the
previous step from the drop-down list and click Next. The next screen allows us to choose
how the OleDbDataAdapter should access the database. Keep the default Use SQL
Statement option and click Next. Click the “Query Builder” button, then select the
Authors table from the “Add” menu and then Close that menu. Place a check mark in
the “*All Columns” box from the small “Authors” window. Notice how that particular
window lists all columns of the Authors table.

Next, create a DataSet to store the query results. To do so, drag DataSet from the
Data tab in the Toolbox. This displays the Add DataSet window. Choose the
“Untyped DataSet (no schema)” since the query with which we populate the
DataSet dictates the DataSet’s schema, or structure.

Figure 19.27 shows all of the auto-generated code. Normally, we omit this code from
the chapter since this code consists solely of GUI components. In this case, however, there
is database functionality that needs to be discussed. Furthermore, we have left the default
naming conventions of Visual Studio in this example, to show exactly what auto-generated

Fig. 19.27 How to access and display a database’s data (part 7 of 7).

Chapter 19 Databases, SQL and ADO.NET 1357

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

code Visual Studio creates. Normally, we would change these names to conform to our pro-
gramming conventions and style.

Good Programming Practice 19.2
Use clear, descriptive variable names in code. This makes programs easier to understand. 19.2

Lines 68-79 initialize the oleDbConnection for this program. The
ConnectionString property specifies the path to the database file on the computer’s
hard drive.

An instance of class OleDbDataAdapter populates the DataSet in this example
with data from the Books database. The instance properties DeleteCommand (lines 90–
91), InsertCommand (lines 92–93), SelectCommand (lines 94–95) and Update-
Command (lines 107–108) are OleDbCommand objects that specify how the OleDb-
DataAdapter deletes, inserts, selects and updates data in the database.

Each OleDbCommand object must have an OleDbConnection with which the
OleDbCommand can communicate with the database. Instance property Connection is
set to the OleDbConnection to the Books database. For oleDbUpdateCommand1,
line 159 sets the Connection property, and lines 153–158 set the CommandText.

Although Visual Studio .NET auto-generates most of this program’s code, we manu-
ally enter code in the TableDisplay constructor (lines 23–32) for populating
dataSet1 using an OleDbDataAdapter. Line 28 uses OleDbDataAdapter
method Fill to retrieve information from the database associated with the OleDbCon-
nection, placing it in the DataSet provided as an argument. The second argument to
this method is a string that specifies the name of the table in the database from which to
Fill the DataSet.

Line 31 invokes DataGrid method SetDataBinding to bind the DataGrid to
a data source. The first argument is the DataSet—in this case, dataSet1—whose data
the DataGrid should display. The second argument is a string representing the name
of the table within the data source we want to bind to the DataGrid. Once this line exe-
cutes, the DataGrid is filled with the information in the DataSet—the number of rows
and columns is automatically set based on the information in dataSet1. Notice that the
columns are automatically given appropriate names, and as the second screen capture in
Fig. 19.27 demonstrates, clicking any column sorts the rows by that column either in
ascending or descending order.

19.6.2 Querying the Books Database
The code example in Fig. 19.30 shows how to execute SQL SELECT statements on a da-
tabase and display the results. Although Fig. 19.30 uses only SELECT statements to query
the data, it could be used to execute many different SQL statements with a few minor mod-
ifications.

Method submitButton_Click is the heart of this program. When the program
invokes this event handler in response to a button click, lines 47–48 assign the SELECT
query that the user typed in queryTextBox as the value of the OleDbDataAdapter’s
SelectCommand property. This string is parsed into an SQL query and executed on
the database with the OleDbDataAdapter’s Fill method (line 55). This method, as
discussed in the previous section, places the data from the database into dataSet1.

1358 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Common Programming Error 19.8
If a DataSet has already been Filled at least once, forgetting to call a DataSet’s
Clear method (line 61) before using the Fill method subsequent times will lead to logic
errors. 19.8

To display, or redisplay, contents in the DataGrid, use method SetDataB-
inding. Again, the first argument is the datasource to be displayed in the table—a
DataSet in this case. The second argument is the string name of the member of the
first argument to be displayed (line 58). Try entering your own queries in the text area and
pressing the Submit Query button to execute the query.

1 // Fig. 19.19: DisplayQueryResults.cs
2 // Displays the contents of the authors database.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class DisplayQueryResults : System.Windows.Forms.Form
12 {
13 private System.Data.OleDb.OleDbConnection oleDbConnection1;
14 private System.Data.DataSet dataSet1;
15 private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;
16 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
17 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
18 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
19 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
20 private System.Windows.Forms.TextBox queryTextBox;
21 private System.Windows.Forms.Button submitButton;
22 private System.Windows.Forms.DataGrid dataGrid1;
23 private System.ComponentModel.Container components = null;
24
25 public DisplayQueryResults()
26 {
27
28 InitializeComponent();
29 }
30
31 // Visual Studio.NET generated code
32
33 [STAThread]
34 static void Main()
35 {
36 Application.Run(new DisplayQueryResults());
37 }
38
39 // perform SQL query on data
40 private void submitButton_Click(object sender,
41 System.EventArgs e)

Fig. 19.28 Execute SQL statements on a database (part 1 of 3).

Chapter 19 Databases, SQL and ADO.NET 1359

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

42 {
43 try
44 {
45 // set the text of the SQL query to what the user typed
46 // in
47 oleDbDataAdapter1.SelectCommand.CommandText =
48 queryTextBox.Text;
49
50 // clear the DataSet from the previous operation
51 dataSet1.Clear();
52
53 // Fill the data set with the information that results
54 // from the SQL query
55 oleDbDataAdapter1.Fill(dataSet1, "Authors");
56
57 // Bind the DataGrid to the contents of the DatSet
58 dataGrid1.SetDataBinding(dataSet1, "Authors");
59 }
60
61 catch (System.Data.OleDb.OleDbException ex)
62 {
63 MessageBox.Show("Invalid query");
64 }
65
66 } // end of submitButton_Click
67 }

Fig. 19.28 Execute SQL statements on a database (part 2 of 3).

1360 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

19.7 Programming with ADO.NET: Modifying a DBMS
Our next example implements a simple address-book application that enables the user to
insert, locate and update the Microsoft Access database Addressbook.

The Addressbook application (Fig. 19.29) provides a GUI to execute SQL state-
ments on the database. Earlier in the chapter, we saw examples that showed how to use
SELECT statements to query a database. Here, that same functionality is provided.

1 // Fig. 19.20: AddressBook.cs
2 // Using SQL statements to manipulate a database.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class AddressBook : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.TextBox faxTextBox;
14 private System.Windows.Forms.TextBox homeTextBox;
15 private System.Windows.Forms.TextBox firstTextBox;
16 private System.Windows.Forms.TextBox stateTextBox;
17 private System.Windows.Forms.TextBox idTextBox;
18 private System.Windows.Forms.TextBox lastTextBox;
19 private System.Windows.Forms.TextBox postalTextBox;
20 private System.Windows.Forms.TextBox addressTextBox;
21 private System.Windows.Forms.TextBox cityTextBox;

Fig. 19.29 How to modify a database (part 1 of 10).

Fig. 19.28 Execute SQL statements on a database (part 3 of 3).

Chapter 19 Databases, SQL and ADO.NET 1361

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

22 private System.Windows.Forms.TextBox countryTextBox;
23 private System.Windows.Forms.TextBox emailTextBox;
24 private System.Data.DataSet dataSet1;
25 private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;
26 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
27 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
28 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
29 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
30 private System.Data.OleDb.OleDbConnection oleDbConnection1;
31 private System.Windows.Forms.TextBox statusTextBox;
32 private System.Windows.Forms.Label addressLabel;
33 private System.Windows.Forms.Label cityLabel;
34 private System.Windows.Forms.Label stateLabel;
35 private System.Windows.Forms.Label idLabel;
36 private System.Windows.Forms.Label firstLabel;
37 private System.Windows.Forms.Label lastLabel;
38 private System.Windows.Forms.Label postalLabel;
39 private System.Windows.Forms.Label countryLabel;
40 private System.Windows.Forms.Label emailLabel;
41 private System.Windows.Forms.Button clearButton;
42 private System.Windows.Forms.Button helpButton;
43 private System.Windows.Forms.Button findButton;
44 private System.Windows.Forms.Button addButton;
45 private System.Windows.Forms.Button updateButton;
46 private System.Windows.Forms.Label faxLabel;
47 private System.Windows.Forms.Label homeLabel;
48 private System.ComponentModel.Container components = null;
49
50 public AddressBook()
51 {
52 InitializeComponent();
53 oleDbConnection1.Open();
54 }
55
56 // Visual Studio.NET generated code
57
58 [STAThread]
59 static void Main()
60 {
61 Application.Run(new AddressBook());
62 }
63
64 private void findButton_Click(object sender,
65 System.EventArgs e)
66 {
67 try
68 {
69 if (lastTextBox.Text != "")
70 {
71 // clear the DataSet from the last operation
72 dataSet1.Clear();
73
74 // create SQL query to find the contact with the
75 // specified last name

Fig. 19.29 How to modify a database (part 2 of 10).

1362 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

76 oleDbDataAdapter1.SelectCommand.CommandText =
77 "SELECT * FROM addresses WHERE lastname = '" +
78 lastTextBox.Text + "'";
79
80 // fill dataSet1 with the rows resulting from the
81 // query
82 oleDbDataAdapter1.Fill(dataSet1);
83
84 // display information
85 Display(dataSet1);
86 statusTextBox.Text += "\r\nQuery successful\r\n";
87 }
88 else
89 lastTextBox.Text =
90 "Enter last name here then press Find";
91 }
92
93 catch (System.Data.OleDb.OleDbException ex)
94 {
95 Console.WriteLine(ex.StackTrace);
96 statusTextBox.Text += ex.ToString();
97 }
98
99 catch (InvalidOperationException ioe)
100 {
101 MessageBox.Show(ioe.Message);
102 }
103
104 } // end of findButton_Click
105
106 private void addButton_Click(object sender, System.EventArgs e)
107 {
108 try
109 {
110 if (lastTextBox.Text != "" && firstTextBox.Text != "")
111 {
112 // create the SQL query to insert a row
113 oleDbDataAdapter1.InsertCommand.CommandText =
114 "INSERT INTO addresses (" +
115 "firstname, lastname, address, city, " +
116 "stateorprovince, postalcode, country, " +
117 "emailaddress, homephone, faxnumber" +
118 ") VALUES ('" +
119 firstTextBox.Text + "', '" +
120 lastTextBox.Text + "', '" +
121 addressTextBox.Text + "', '" +
122 cityTextBox.Text + "', '" +
123 stateTextBox.Text + "', '" +
124 postalTextBox.Text + "', '" +
125 countryTextBox.Text + "', '" +
126 emailTextBox.Text + "', '" +
127 homeTextBox.Text + "', '" +
128 faxTextBox.Text + "')";
129

Fig. 19.29 How to modify a database (part 3 of 10).

Chapter 19 Databases, SQL and ADO.NET 1363

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

130 // notify the user the query is being sent
131 statusTextBox.Text += "\r\nSending query: " +
132 oleDbDataAdapter1.InsertCommand.CommandText +
133 "\r\n" ;
134
135 // send query
136 oleDbDataAdapter1.InsertCommand.ExecuteNonQuery();
137
138 statusTextBox.Text += "\r\nQuery successful\r\n";
139 }
140 else
141 statusTextBox.Text += "\r\nEnter at least first " +
142 "and last name then press Add\r\n";
143 }
144
145 catch (System.Data.OleDb.OleDbException ex)
146 {
147 Console.WriteLine(ex.StackTrace);
148 statusTextBox.Text += ex.ToString();
149 }
150
151 } // end of addButton_Click
152
153 private void updateButton_Click(object sender,
154 System.EventArgs e)
155 {
156 try
157 {
158 // make sure the user has already found the record
159 // he or she wishes to update
160 if (idTextBox.Text != "")
161 {
162 // set the SQL query to update all the fields in
163 // the table where the id number matches the id
164 // in idTextBox
165 oleDbDataAdapter1.UpdateCommand.CommandText =
166 "UPDATE addresses SET " +
167 "firstname ='" + firstTextBox.Text +
168 "', lastname='" + lastTextBox.Text +
169 "', address='" + addressTextBox.Text +
170 "', city='" + cityTextBox.Text +
171 "', stateorprovince='" + stateTextBox.Text +
172 "', postalcode='" + postalTextBox.Text +
173 "', country='" + countryTextBox.Text +
174 "', emailaddress='" + emailTextBox.Text +
175 "', homephone='" + homeTextBox.Text +
176 "', faxnumber='" + faxTextBox.Text +
177 "' WHERE id=" + idTextBox.Text;
178
179 // notify the user the query is being set
180 statusTextBox.Text += "\r\nSending query: " +
181 oleDbDataAdapter1.UpdateCommand.CommandText +
182 "\r\n";
183

Fig. 19.29 How to modify a database (part 4 of 10).

1364 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

184 // execute query
185 oleDbDataAdapter1.UpdateCommand.ExecuteNonQuery();
186
187 statusTextBox.Text += "\r\nQuery successful\r\n";
188 }
189 else
190 statusTextBox.Text += "\r\nYou may only update " +
191 "an existing record. Use Find to locate the" +
192 "record, then modify the information and " +
193 "press Update.\r\n";
194 }
195
196 catch (System.Data.OleDb.OleDbException ex)
197 {
198 Console.WriteLine(ex.StackTrace);
199 statusTextBox.Text += ex.ToString();
200 }
201
202 } // end of updateButton_Click
203
204 private void clearButton_Click(object sender,
205 System.EventArgs e)
206 {
207 idTextBox.Clear();
208 ClearTextBoxes();
209 }
210
211 private void helpButton_Click(object sender,
212 System.EventArgs e)
213 {
214 statusTextBox.AppendText(
215 "\r\nClick Find to locate a record\r\n" +
216 "Click Add to insert a new record.\r\n" +
217 "Click Update to update the information in a record "
218 + "\r\nClick Clear to empty the textboxes");
219 }
220
221 public void Display(DataSet dataSet)
222 {
223 try
224 {
225 // get the first DataTable - there will always be one
226 DataTable dataTable = dataSet.Tables[0];
227
228 if (dataTable.Rows.Count != 0)
229 {
230 int recordNumber = (int) dataTable.Rows[0][0];
231
232 idTextBox.Text = recordNumber.ToString();
233 firstTextBox.Text =
234 (string) dataTable.Rows[0][1];
235 lastTextBox.Text =
236 (string) dataTable.Rows[0][2];
237 addressTextBox.Text =

Fig. 19.29 How to modify a database (part 5 of 10).

Chapter 19 Databases, SQL and ADO.NET 1365

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

238 (string) dataTable.Rows[0][3];
239 cityTextBox.Text =
240 (string) dataTable.Rows[0][4];
241 stateTextBox.Text =
242 (string) dataTable.Rows[0][5];
243 postalTextBox.Text =
244 (string) dataTable.Rows[0][6];
245 countryTextBox.Text =
246 (string) dataTable.Rows[0][7];
247 emailTextBox.Text =
248 (string) dataTable.Rows[0][8];
249 homeTextBox.Text =
250 (string) dataTable.Rows[0][9];
251 faxTextBox.Text =
252 (string) dataTable.Rows[0][10];
253 }
254
255 else
256 statusTextBox.Text += "\r\nNo record found\r\n";
257 }
258
259 catch(System.Data.OleDb.OleDbException ex)
260 {
261 Console.WriteLine(ex.StackTrace);
262 statusTextBox.Text += ex.ToString();
263 }
264
265 } // end of Display
266
267 public void ClearTextBoxes()
268 {
269 firstTextBox.Clear();
270 lastTextBox.Clear();
271 addressTextBox.Clear();
272 cityTextBox.Clear();
273 stateTextBox.Clear();
274 postalTextBox.Clear();
275 countryTextBox.Clear();
276 emailTextBox.Clear();
277 homeTextBox.Clear();
278 faxTextBox.Clear();
279 }
280 }

Fig. 19.29 How to modify a database (part 6 of 10).

1366 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Fig. 19.29 How to modify a database (part 7 of 10).

Chapter 19 Databases, SQL and ADO.NET 1367

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Fig. 19.29 How to modify a database (part 8 of 10).

1368 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Fig. 19.29 How to modify a database (part 9 of 10).

Chapter 19 Databases, SQL and ADO.NET 1369

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Event handler findButton_Click performs the SELECT query on the database
for the record associated with the string in lastTextBox. This represents the last-
name of the person whose record the user wishes to retrieve. Line 72 invokes method
Clear of class DataSet to empty the DataSet of any prior data. Lines 76–78 modify
the text of the SQL query to perform the appropriate SELECT operation. This statement is
executed by the OleDbDataAdapter method Fill (line 82). Notice how a different
overload of that method has been used in this situation. Only the DataSet to be filled is
passed as an argument. Finally, the TextBoxes are updated with a call to method Dis-
play (line 85).

Methods addButton_Click and updateButton_Click perform INSERT and
UPDATE operations, respectively. Each method uses members of class OleDbCommand
to perform operations on a database. The instance properties InsertCommand and
UpdateCommand of class OleDbDataAdapter are instances of class OleDbCom-
mand.

Property CommandText of class OleDbCommand is a string that represents the
SQL statement that the OleDbCommand object executes. Method addButton_Click
sets this property of InsertCommand to execute the appropriate INSERT statement on
the database (lines 113–128). Method updateButton_Click sets this property of

Fig. 19.29 How to modify a database (part 10 of 10).

1370 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

UpdateCommand to execute the appropriate UPDATE statement on the database (lines
165–177).

Method ExecuteNonQuery of class OleDbCommand performs the action speci-
fied by CommandText. Hence, the INSERT statement defined by
oleDbDataAdapter1.InsertCommand.CommandText in event handler
addButton_Click is executed when line 136 invokes method
oleDbDataAdapter1.InsertCommand.ExecuteNonQuery. Similarly, the
UPDATE statement defined by oleDbDataAdapter1.DeleteCommand.Com-
mandText in event handler updateButton_Click is executed by
oleDbDataAdapter1.UpdateCommand.ExecuteNonQuery (line 185).

The application’s Help button prints instructions in the console at the bottom of the
application window (lines 214–218). The event handler for this button is
helpButton_Click. The Clear button clears the text out of the TextBoxes. This
event handler is defined in the method clearButton_Click and uses the helper func-
tion ClearTextBoxes (line 211).

19.8 Reading and Writing XML Files
A powerful feature of ADO.NET is its ability to convert data stored in a datasource to
XML. Cclass DataSet of namespace System.Data provides methods WriteXml,
ReadXml and GetXml, which enable developers to create XML documents from data-
sources and to convert data from XML into datasources. The application of Fig. 19.30 pop-
ulates a DataSet with statistics about baseball players then writes the data to a files as
XML. The application also displays the XML in a TextBox.

1 // Fig. 19.30 XMLWriter.cs
2 // Demonstrates generating XML from an ADO.NET DataSet
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class XMLWriter : System.Windows.Forms.Form
12 {
13 private System.Data.OleDb.OleDbConnection baseballConnection;
14 private System.Data.OleDb.OleDbDataAdapter playersDataAdapter;
15 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
16 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
17 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
18 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
19 private System.Data.DataSet playersDataSet;
20 private System.Windows.Forms.DataGrid playersDataGrid;
21 private System.Windows.Forms.Button writeButton;
22 private System.Windows.Forms.TextBox outputTextBox;

Fig. 19.30 Application that writes an XML representation of a DataSet to a file.

Chapter 19 Databases, SQL and ADO.NET 1371

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

23 private System.ComponentModel.Container components = null;
24
25 public XMLWriter()
26 {
27 //
28 // Required for Windows Form Designer support
29 //
30 InitializeComponent();
31
32 // open database connection
33 baseballConnection.Open();
34
35 // fill DataSet with data from OleDbDataAdapter
36 playersDataAdapter.Fill(playersDataSet, "Players");
37
38 // bind DataGrid to DataSet
39 playersDataGrid.SetDataBinding(playersDataSet, "Players");
40
41 }
42
43 // Visual Studio .NET-generated code
44
45 // The main entry point for the application.
46 [STAThread]
47 static void Main()
48 {
49 Application.Run(new XMLWriter());
50 }
51
52 // write XML representation of DataSet when button clicked
53 private void writeButton_Click(object sender, System.EventArgs e)
54 {
55 // write XML representation of DataSet to file
56 playersDataSet.WriteXml("Players.xml");
57
58 // display XML in TextBox
59 outputTextBox.Text += "Writing the following XML:\n\n" +
60 playersDataSet.GetXml() + "\n\n";
61
62 }
63 }

Fig. 19.30 Application that writes an XML representation of a DataSet to a file.

1372 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

The XMLWriter constructor (lines 25-41) establishes a connection to the Baseball
database on line 33. Line 36 uses method Fill of class OleDbDataAdapter to popu-
late playersDataSet with data from the Players table in the Baseball database.
Line 39 binds the playersDataGrid to playersDataSet to display the information
to the user.

Method writeButton_Click defines the event handler for the Write to XML
button. When the user clicks this button, line 56 invokes DataSet method WriteXml,
which generates an XML representation of the data contained in the DataSet and writes
the XML to the specified file. Figure 19.31 shows this XML representation. Each
Players element represents a record in the Players table. The firstName, last-
Name, battingAverage and playerID elements correspond to the fields of the same
names in the Players database table.

1 <?xml version="1.0" standalone="yes"?>
2 <NewDataSet>
3 <Players>
4 <firstName>John</firstName>
5 <lastName>Doe</lastName>
6 <battingAverage>0.375</battingAverage>
7 <playerID>1</playerID>
8 </Players>
9 <Players>

10 <firstName>Jack</firstName>
11 <lastName>Smith</lastName>
12 <battingAverage>0.223</battingAverage>
13 <playerID>2</playerID>
14 </Players>
15 <Players>
16 <firstName>George</firstName>
17 <lastName>O'Malley</lastName>
18 <battingAverage>0.444</battingAverage>

Fig. 19.31 XML document generated from DataSet in XMLWriter.

Fig. 19.30 Application that writes an XML representation of a DataSet to a file.

Chapter 19 Databases, SQL and ADO.NET 1373

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

SUMMARY
• A database is an integrated collection of data. A database management system (DBMS) provides

mechanisms for storing and organizing data.

• Today’s most popular database systems are relational databases.

• A language called Structured Query Language (SQL) is used almost universally with relational
database systems to perform queries and manipulate data.

• A programming language connects to, and interacts with, relational databases via an interface—
software that facilitates communications between a database management system and a program.

• C# programmers communicate with databases and manipulate their data using ADO.NET.

• A relational database is composed of tables. A row of a table is called a record.

• A primary key is a field that contains unique data that cannot be duplicated in other records.

• Each column of the table represents a different field (or attribute).

• The primary key can be composed of more than one column (or field) in the database.

• SQL provides a complete set of commands enabling programmers to define complex queries to
select data from a table. The results of a query are commonly called result sets (or record sets).

• A one-to-many relationship between tables indicates that a record in one table can have many
records in a separate table.

• A foreign key is a field for which every entry in one table has a unique value in another table and
where the field in the other table is the primary key for that table.

• The simplest format of a SELECT query is

SELECT * FROM tableName

where the asterisk (*) indicates that all columns from tableName should be selected and tableNa-
me specifies the table in the database from which the data will be selected.

• To select specific fields from a table, replace the asterisk (*) with a comma-separated list of the
field names to select.

• Programmers process result sets by knowing in advance the order of the fields in the result set.
Specifying the field names to select guarantees that the fields are always returned in the specified
order, even if the actual order of the fields in the database table(s) changes.

• The optional WHERE clause in a SELECT query specifies the selection criteria for the query. The
simplest format of a SELECT query with selection criteria is

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

• The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE. Operator LIKE
is used for pattern matching with wildcard characters percent (%) and underscore (_).

• A percent character (%) in a pattern indicates that a string matching the pattern can have zero or
more characters at the percent character’s location in the pattern.

• An underscore (_) in the pattern string indicates a single character at that position in the pattern.

19 <playerID>3</playerID>
20 </Players>
21 </NewDataSet>

Fig. 19.31 XML document generated from DataSet in XMLWriter.

1374 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

• The results of a query can be arranged in ascending or descending order using the optional ORDER
BY clause. The simplest form of an ORDER BY clause is

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order, DESC specifies descending order and field specifies the
field on which the sort is based. The default sorting order is ascending, so ASC is optional.

• Multiple fields can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY field1 sortingOrder, field2 sortingOrder, …

• The WHERE and ORDER BY clauses can be combined in one query.

• A join merges records from two or more tables by testing for matching values in a field that is com-
mon to both tables. The simplest format of a join is

SELECT fieldName1, fieldName2, …
FROM table1, table2
WHERE table1.fieldName = table2.fieldName

in which the WHERE clause specifies the fields from each table that should be compared to deter-
mine which records will be selected. These fields normally represent the primary key in one table
and the corresponding foreign key in the other table.

• If an SQL statement uses fields with the same name from multiple tables, the field name must be
fully qualified with its table name and a dot operator (.).

• An INSERT statement inserts a new record in a table. The simplest form of this statement is

INSERT INTO tableName (fieldName1, fieldName2, …, fieldNameN)
VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the record. The tableName is followed by a com-
ma-separated list of field names in parentheses. The list of field names is followed by the SQL
keyword VALUES and a comma-separated list of values in parentheses.

• SQL statements use a single quote (') as a delimiter for strings. To specify a string containing a
single quote in an SQL statement, the single quote must be escaped with another single quote.

• An UPDATE statement modifies data in a table. The simplest form for an UPDATE statement is

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is followed
by keyword SET and a comma-separated list of field name/value pairs in the format
fieldName = value. The WHERE clause criteria determine the record(s) to update.

• A DELETE statement removes data from a table. The simplest form for a DELETE statement is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE criteria de-
termine which record(s) to delete.

• MySQL is an open source DBMS written in C/C++ and provides an extremely fast low-tier User
Interface to the database.

Chapter 19 Databases, SQL and ADO.NET 1375

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

• SQLServer 2000 is a Microsoft product designed for easy integration with Web applications. Of
particular interest to C# programmers is the library of specially optimized code Microsoft has pro-
vided for interfacing with SQLServer.

• Oracle9i is a commercial database system in which all types of content are supported, users can
make changes to databases through an online interface, and strong protocols are used to ensure se-
curity.

• Microsoft Access 2000™ is an easy-to-use Office 2000™ database program.

• System.Data, System.Data.OleDb and System.Data.SqlClient are the three
main namespaces in ADO.NET.

• The first approach to ADO.NET programming has class DataSet of the System.Data
namespace at its core. Instances of this class are in-memory caches of data.

• The advantage of using class DataSet is that it is a disconnected way to modify the contents of
a datasource.

• The second approach to ADO.NET programming uses OleDbCommand of the System.Da-
ta.OleDb namespace. SQL statements are executed directly on the datasource.

• Fewer connections and more operations make the first approach the better choice. More connec-
tions and fewer operations make the second approach the better choice.

• The System.Data.SqlClient namespace is specially designed optimized code to interact
with an SQLServer. Both interfacing levels and security checks are eliminated with System.Da-
ta.SqlClient to enhance performance.

• System.Data.OleDb is safer, general interfacing to any database.

• It is safe to assume that something written using classes in namespace OleDb can be directly con-
verted to use classes in namespace SqlClient.

• Use the <Add Connection> option to create a database connection in the “Data Link Proper-
ties” window.

• Use the Data Adapter Configuration Wizard to set up an OleDbDataAdapter
and generate queries.

• If a DataSet needs to be named, use the instance property DataSetName.

• OleDbCommands commands are what the OleDbDataAdapter executes on the da-
tabase in the form of SQL queries.

• Instance property TableMappings of class OleDbDataAdapter is a DataT-
ableCollection and is used to create DataTableMappings.

• DataColumnMappings are used to convert data from a database to a DataSet and vice versa.

• Instance property Parameters of class OleDbCommand is a collection of OleDb-
Parameter objects. Adding them to an OleDbCommand is an optional way to have
parameters to a command, instead of creating a lengthy, complex command string.

• OleDbCommand instance property Connection is set to the OleDbConnection that the
command will be executed on, and the instance property CommandText is set to the SQL query
that will be executed on the database.

• OleDbDataAdapter method Fill retrieves information from the database, and the OleDb-
Connection is associated with and places it in the DataSet provided as an argument.

• DataGrid method SetDataBinding binds a DataGrid to a data source.

• Method Clear of class DataSet is called to empty the DataSet of any prior data.

1376 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

• The instance properties InsertCommand and UpdateCommand of class OleDbData-
Adapter are instances of class OleDbCommand.

• Property CommandText of class OleDbCommand is the string that represents the SQL state-
ment to be executed.

• Method ExecuteNonQuery of class OleDbCommand is called to perform the action specified
by CommandText on the database.

• C# has the ability to readily convert data in a datasource to XML and vice versa.

• Method WriteXml of class DataSet writes the XML representation of the DataSet instance
to the first argument passed to it. This method had several overloads that allow an output source
and a character encoding for the data to be specified.

• Method ReadXml of class DataSet reads the XML representation of the first argument passed
to it into ots own DataSet. This method has several overloads that allow an input source and a
character encoding for the data to be specified.

TERMINOLOGY
% SQL wildcard character
_ SQL wildcard character
AcceptChanges method of DataRow
AcceptChanges method of DataSet
AcceptChanges method of DataTable
ADO.NET
AND
Application Programming Interface
ASC
ASC (ascending order)
ascending order (ASC)
asterisk (*)
atomic operation
attribute
cache
Crystal Reports
Clear method of DataSet
column
column number
column number in a result set
CommandText method of OleDbCommand
CommandText property of OleDbCommand
commit a transaction
connect to a database
ConnectionConnection property of OleDbCommand
CrystalDecisions.Windows.Forms.CrystalReportViewer class
data attribute
database
database management system (DBMS)
database table
DataColumn class
DataColumnMapping class
DataGrid class
DataRow class

Chapter 19 Databases, SQL and ADO.NET 1377

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

DataRowCollection class
DataSet class
DataSetName property of DataSet
DataTable class
DataTableCollection class
DataTableMapping class
DB2
default sorting order is ascending
DELETE
DELETE FROM
DeleteCommand property of OleDbAdapter
DESC
disconnected
distributed computing system
escape character
ExecuteNonQuery method of OleDbCommand
ExecuteNonQuery property of OleDbCommand
ExecuteReader method of OleDbCommand
ExecuteScalar method of OleDbCommand
field
Fill method of OleDbAdapter
FROM
fully qualified name
GetXml method of DataSet
GROUP BY
Informix
in-memory cache
INSERT INTO
INSERT INTO operation
InsertCommand property of OleDbAdapter
interface
ItemArray property of DataRow
joining tables
LIKE
locate records in a database
match the selection criteria
Merge records from Tables
Microsoft SQL Server
MySQL
OleDbCommand class
OleDbConnection class
OleDbDataAdapter class
OleDbDataReader class
OleDbParameter class
Oracle
ORDER BY
ordered
ordering of records
Parameters property of OleDbParameter
pattern matching

1378 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

percent (%) SQL wildcard character
primary key
query
query a database
ReadXml method of DataSet
record
record set
Refresh method of DataGrid
RejectChanges method of DataRow
RejectChanges method of DataTable
relational database
relational database model
relational database table
result set
result sets
roll back a transaction
row
Rows property of DataTable
rows to be retrieved
SELECT
select
select all fields from a table
SelectCommand property of OleDbAdapter
selecting data from a table
selection criteria
SET
SET keyword
SetDataBinding method of DataGrid
single quote character
SQL (Structured Query Language)
SQL keywords
SQL statement
SqlConnection class
square brackets in a query
Structured Query Language (SQL)
Sybase
System.Data namespace
System.Data.OleDb namespace
System.Data.Sqlclient namespace
table
table column
table in which record will be updated
table row
TableMappings property of OleDbAdapter
tableName.fieldName
Tables property of DataSet
tree structure
underscore (_) SQL wildcard character
UPDATE
Update method of OleDbDataAdapter

Chapter 19 Databases, SQL and ADO.NET 1379

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

UpdateCommand property of OleDbAdapter
VALUES
WHERE
WriteXml method of DataSet
XML document

SELF-REVIEW EXERCISES
19.1 Fill in the blanks in each of the following statements:

a) The most popular database query language is .
b) A table in a database consists of and .
c) Databases can be manipulated in C# as objects.
d) Use class to display data graphically in C#.
e) SQL keyword is followed by the selection criteria that specify the records to

select in a query.
f) SQL keyword specifies the order in which records are sorted in a query.
g) Selecting data from multiple database tables is called the data.
h) A is an integrated collection of data that is centrally controlled.
i) A is a field in a table for which every entry has a unique value in another

table and where the field in the other table is the primary key for that table.
j) Namespace contains special classes and interfaces for manipulating

SQLServer databases in C#.
k) C# uses to transmit data between datasources.
l) Namespace is C#’s general interfacing to a database.

19.2 State which of the following are true or false. If false, explain why.
a) In general, ADO.NET is a disconnected model.
b) SQL can implicitly convert fields with the same name from two or mores tables to the

appropriate field.
c) Only the UPDATE SQL statement can commit changes to a database.
d) Executing OleDbCommands is not a transaction process.
e) DataSets can implicitly convert XML data read with method ReadXml into its tables.
f) SELECT statements can merge data from multiple tables.
g) Crystal Reports is an example of a DBMS.
h) An OleDbDataAdapter can Fill a DataSet.
i) All of a DataRow’s values can be implicitly assigned with the instance property

ItemArray.
j) SQLServer is an example of a managed provider.
k) Because C# uses a disconnected model, OleDbConnections are optional.
l) It is always faster to assign a value to a variable than to instantiate a new object.

ANSWERS TO SELF-REVIEW EXERCISES
19.1 a) SQL. b) rows, columns. c) DataSet. d) DataGrid. e) WHERE. f) ORDER BY.
g) joining. h) database. i) foreign key. j) System.Data.Sql. k) XML. l) System.Da-
ta.OleDb.

19.2 a) True. b) False. In a query, not providing fully-qualified names for fields with the same
name from two or more tables is an error. c) False. INSERT and DELETE change the database too.
Do not confuse the SQL Update statement with method OleDbDataAdapter.Update. d)

1380 Databases, SQL and ADO.NET Chapter 19

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

True. e) False. The DataSet must be Cleared first or the DataRows must be explicitly updated.
f) True. g) False. Crystal Reports creates graphical/Web representations of data. h) True. i) True. j)
True. k) False. This class is required to connect to a database. l) True.

EXERCISES
19.3 Using the techniques shown in this chapter, define a complete query application for the Au-
thors.mdb database. Provide a series of predefined queries with an appropriate name for each query-
displayed in a System.Windows.Forms.ComboBox. Also allow the user to supply their own
queries and add them to the ComboBox. Provide any queries you feel are appropriate.

19.4 Using the techniques shown in this chapter, define a complete query application for the
Books.mdb database. Provide a series of predefined queries with an appropriate name for each que-
ry displayed in a System.Windows.Forms.ComboBox. Also, allow users to supply their own
queries and add them to the ComboBox. Provide the following predefined queries:

a) Select all authors from the Authors table.
b) Select all publishers from the Publishers table.
c) Select a specific author and list all books for that author. Include the title, year and ISBN

number. Order the information alphabetically by title.
d) Select a specific publisher and list all books published by that publisher. Include the title,

year and ISBN number. Order the information alphabetically by title.
e) Provide any other queries you feel are appropriate.

19.5 Modify Exercise 19.4 to define a complete database manipulation application for the
Books.mdb database. In addition to the querying capabilities, the user should be able to edit existing
data and add new data to the database. Allow the user to edit the database in the following ways:

a) Add a new author.
b) Edit the existing information for an author.
c) Add a new title for an author (remember that the book must have an entry in the Autho-

rISBN table). Be sure to specify the publisher of the title.
d) Add a new publisher.
e) Edit the existing information for a publisher.

For each of the preceding database manipulations, design an appropriate GUI to allow the user to
perform the data manipulation.

19.6 Modify the address book example of Fig. 19.20 to enable each address book entry to contain
multiple addresses, phone numbers and e-mail addresses. The user of the program should be able to
view multiple addresses, phone numbers and e-mail addresses. [Note: This is a large exercise that re-
quires substantial modifications to the original classes in the address book example.]

19.7 Create an application that allows the user to modify all fields of a database using a transaction
process model. The user should be able to find, modify and create entries. The GUI should include
buttons Accept Changes and Reject Changes. Modifications to the datasource should be made
when the user clicks Accept Changes by invoking method Update of the OleDbDataAdapter
object. The DataSet’s AcceptChangesmethod should be invoked after changes are made to the
datasource.

19.8 Write a program that allows the user to graphically modify a database through an XML text
editor. The GUI should be able to display the contents of the database and commit any changes to the
XML text to the database.

BIBLIOGRAPHY
Archer, Tom, Inside C#. Redmond, Washington: Microsoft Press, 2001.

Chapter 19 Databases, SQL and ADO.NET 1381

Copyright © 2002 Prentice-Hall, Inc. All rights reserved.

Blaha, M. R.; W. J. Premerlani; and J. E. Rumbaugh, “Relational Database Design Using an Object-
Oriented Methodology,” Communications of the ACM, Vol. 31, No. 4, April 1988, pp.
414–427.

Codd, E. F., “A Relational Model of Data for Large Shared Data Banks,” Communications of the
ACM, June 1970.

Codd, E. F., “Further Normalization of the Data Base Relational Model,” in Courant Computer Sci-
ence Symposia, Vol. 6, Data Base Systems. Upper Saddle River, N.J.: Prentice Hall,
1972.

Codd, E. F., “Fatal Flaws in SQL,” Datamation, Vol. 34, No. 16, August 15, 1988, pp. 45–48.

Conrad, James et al., Introducing .NET. Birmingham, UK: Wrox Press, 2000.

Deitel, H. M., Operating Systems, Second Edition. Reading, MA: Addison Wesley Pubishing, 1990.

Date, C. J., An Introduction to Database Systems. Reading, MA: Addison Wesley Pubishing, 1981.

Date, C. J., An Introduction to Database Systems, Seventh Edition. Reading, MA: Addison Wesley
Pubishing, 2000.

Harvey, Burton et al., C# Programming With the Public Beta. Birmingham, UK: Wrox Press, 2000.

Microsoft Developer Network Library > .NET Framework SDK. <msdn.microsoft.com/
library/default.asp>

MySQL Manual. <www.mysql.com/doc/>

Oracle Technology Network > Documentation. <otn.oracle.com/docs/content.html>

Relational Technology, INGRES Overview. Alameda, CA: Relational Technology, 1988.

Stonebraker, M., “Operating System Support for Database Management,” Communications of the
ACM, Vol. 24, No. 7, July 1981, pp. 412–418.

Visual Stufio .NET > ADO.NET Overview. <msdn.microsoft.com/vstudio/nextgen/
technology/adoplusdefault.asp>

Winston, A., “A Distributed Database Primer,” UNIX World, April 1988, pp. 54–63.

