
ABSTRACT
This paper describes a project, called Gravity, that is providing
support for building client-side applications out of dynamically
available building blocks. The purpose behind this work is not
only to deal with real-world issues already facing developers and
end-users, but to also work toward a grander vision. In this vision,
applications are built using context-aware architectures, meaning
that context (e.g., location, environment, user task) is used as a fil-
ter to determine which building blocks are relevant to the applica-
tion at any given time. The main concept underlying this vision is
dynamically available building blocks, i.e., building blocks that
can appear or disappear at any time. The Gravity technology de-
scribed in this paper is a starting point for such research.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
graphical environments; D.2.11 [Software Engineering]: Soft-
ware Architectures – languages; K.6.3 [Management of Com-
puting and Information Systems]: Software Management – soft-
ware development.

General Terms
Design

Keywords
Component-Oriented Programming, Service-Oriented Program-
ming, OSGi, Dynamic Availability

 1 INTRODUCTION
This paper describes a research project, called Gravity, that envi-
sions a future where all applications are built from re-usable
building blocks, such as components and web services. This fu-
ture leads to the proliferation of building blocks beyond software
developers' ability to integrate them into applications efficiently or
effectively. This situation is further exacerbated by pervasive
computing and ubiquitous network connectivity where literally all
devices offer services for dynamic integration into client applica-
tions.

In response to this, Gravity pushes a vision of client-side applica-
tions that easily and inexpensively undergo continual evolution
and adaptation by using context (e.g., location, environment, user
task) to dynamically filter available building blocks. Unlike cur-

rent client-side technology, which provides for limited, semi-static
forms of change, such as the occasional update from the software
vendor or the rigid extension mechanism of the plug-in, the goal
of Gravity is to enable client-side applications to evolve and adapt
dynamically with respect to virtually any and all changes in their
design, deployment, and usage, and to do so as a normal and
seamless part of their execution behavior. To do this, Gravity cur-
rently focuses on one significant underlying assumption: that ap-
plication building blocks exhibit dynamic availability. Specific-
ally, this refers to the situation where application building blocks
appear or disappear at any time and this cannot be controlled by
the application.

The assumption of dynamic availability may appear farfetched,
but computing trends, such as web services and pervasive comput-
ing, are making dynamically available building blocks common-
place. Web services push application functionality into network-
based services and as a result push the inherent unreliability of
distributed systems into ordinary client-side applications. Pervas-
ive computing strives to embed computing power into almost all
imaginable devices, each of which is able to offer services via
wireless networks and other protocols. In both of these cases, ser-
vice failures may occur, for example, when a server crashes or
when a user simply walks out of wireless network range. Like-
wise, applications may have to deal with the situation when serv-
ers or network connections are restored or when completely new
services are discovered.

This paper describes the initial steps Gravity has taken to address
issues of dynamic availability of building blocks by combining
component-oriented and service-oriented concepts into an applica-
tion framework.

Gravity: Supporting Dynamically Available Services in
Client-Side Applications

Richard S. Hall and Humberto Cervantes
Laboratoire LSR Imag, 220 rue de la Chimie

Domain Universitaire, BP 53, 38041
Grenoble, Cedex 9 FRANCE

{Richard.Hall, Humberto.Cervantes}@imag.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC/FSE 03, September 1 – 5, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009...$5.00.

application's compositional consistency (top) in response to
changes in the availability of components.

379

 2 APPROACH
Gravity views component orientation and service orientation as
complementary. Component orientation focuses on composition
and independent deployment, while service orientation focuses on
description, discovery, and dynamic integration. Current work in
Gravity investigates simplifying building and using applications
whose building blocks may appear or disappear at any time. Fig-
ure 1 depicts the focus of the current work (along the top of the
figure) and its relationship to the overall vision. The Gravity pro-
totype is implemented on top of the Open Services Gateway Initi-
ative services gateway platform [10].

 2.1 Service-Oriented Component Model
The notion of a service-oriented component model arises from the
concepts of service-oriented programming (SOP). In SOP, a ser-
vice is a contract of defined behavior and semantics. A service cli-
ent is not tied to a particular service provider, instead, service pro-
viders are interchangeable [1]. Service-oriented solutions follow a
pattern that consists of service providers, service requesters, and a
service registry. With respect to Gravity, a component model is
defined as “service oriented” if it provides a service registry for
publishing and discovering services that are offered by component
instances.

In Gravity, components are black boxes that provide specific im-
plementations of services and may also use services implemented
by other components. A service is simply a Java interface. The in-
terface itself is not used to derive the associated semantics of the
service; instead, service interfaces and their semantics are defined
externally, such as in a specification document, and any imple-
menter of the service interface guarantees to faithfully implement
the semantics of the service specification. Gravity's service re-
gistry contains references to published services that are implemen-
ted (i.e., provided) by component instances. The service registry is
globally accessible to all component instances for purposes of dis-
covering available services. The service registry allows services to
be registered with an associated set of properties (i.e., attribute-
value pairs). Components search for available services by per-
forming a query over the associated properties and the desired ser-
vice interface name.

 2.2 Supporting Framework
Gravity's service-oriented component model does not, in and of it-
self, simplify the complex tasks of dealing with dynamically
available building blocks; the Gravity framework plays a major
role.

Component Deployment. Gravity stresses the concept of “deploy
at any time,” since applications supporting dynamic building
block availability are always in a state of deployment. This means
that deployment activities are also possible at run time. The Grav-
ity framework supports installation, update, activation, and re-
moval of components.

Application Design. Similarly to deployment, Gravity stresses
the concept of “design at any time,” since an application's design
must change in response to building block availability. For client-
side applications, the framework supports two kinds of design: ar-
chitectural (or compositional) and aesthetic. Architectural design
pertains to the actual “node and arc” concepts of software archi-
tecture, whereas aesthetic design pertains to graphical user inter-
face composition and layout. The framework provides both auto-
mated and user-directed support for both of these design areas.

Design support is available all the time, since it is not possible to
control when new building blocks arrive or depart.

Service Dependency Management. Gravity simplifies support
for dynamic building block availability by introducing the Service
Binder as a mechanism to automate service dependency manage-
ment in its component model. Using the Service Binder, a de-
veloper only provides dependency meta-data about his compon-
ents and the instances he wants to create, instead of writing com-
plex and error-prone service management code. The meta-data
used by the Service Binder is contained in an XML file, called an
instance descriptor, which is essentially a list of component types
and instances to create. The instance descriptor file is placed in
the component deployment unit (i.e., JAR file).

For each component instance described in the instance descriptor,
the Service Binder creates an instance manager. The instance
manager has four responsibilities:

� dynamically monitor the component instance's service de-
pendencies,

� create/destroy the component instance when its service de-
pendencies are satisfied/unsatisfied,

� bind/unbind required services to/from the component in-
stance when it is created/destroyed, and

� register/unregister any services provided by the compon-
ent instance after its required services are bound/unbound.

Each instance manager actually represents the intention of creat-
ing a component instance and each tries to constantly maintain
this intention throughout its lifetime, until it is explicitly disposed.

The description of an instance, inside the instance descriptor, in-
cludes the name of the class for the component, the set of services
implemented by the component, a set of properties associated with
the services, and a set of service dependencies for the component
instance. Service dependencies are characterized by the fully qual-
ified service interface name, a property filter, cardinality, and
binding policy.

Cardinality is used to express optionality, such as a zero-to-one
dependency, and also to express aggregation, such as a one-to-
many dependency. Binding policy is specified as either static or
dynamic and determines how run-time service changes are
handled and how the component instance life cycle is managed. A
static binding policy indicates that dependency bindings cannot
change at run time without invalidating the associated instance,
whereas a dynamic binding policy indicates that dependency bind-
ings can change at run time.

Despite the relative simplicity of the meta-data, applications using
the Service Binder exhibit interesting auto-adaptive characterist-
ics. For example, it is easy to describe a dynamic plugin-oriented
system, such as a web browser, using a zero-to-many dynamic de-
pendency between the browser and plugin services. This indicates
that the web browser can work without any plugins and that it will
automatically integrate or remove plugins as soon as they are in-
stalled or removed, respectively. Any application using the Ser-
vice Binder can easily exhibit auto-adaptive behavior in response
to dynamically installed and/or uninstalled components.

The following is an example of the XML representation of an in-
stance descriptor:

<bundle>
 <instance
 class="org.office.SpellCheckServiceImpl">
 <property name="Language"

380

 value="English" type="string"/>
 <provides
 service="org.office.svc.SpellCheckService"/>
 <requires
 service="org.office.svc.DictionaryService"
 filter="(Language=English)"
 cardinality="1..n"
 policy="dynamic"
 bind-method="addDictionary"
 unbind-method="removeDictionary"/>
 </instance>
</bundle>

This example describes a component whose implementation is a
Java class called SpellCheckServiceImpl. An instance of
this component has a language property associated with it and im-
plements the SpellCheckService service interface. Instances
of this component have a dynamic one-to-many dependency on
DictionaryService service interfaces.

 2.3 Framework Usage Scenario
Figure 2 depicts several screen captures of the Gravity framework
in action. Snapshots 2a and 2b depict the composition and design
environment, which works much like a typical GUI rapid applica-
tion design tool. Behind the scenes, though, the application's com-
position connections are automatically managed and monitored
based on component instance meta-data descriptions. The list box
along the left side contains the available component types and
new component types are automatically discovered as component
factories are registered in the underlying service registry. The

composed application is live and the user can switch into run-time
mode at any time to use it, as shown in figure 2c.

Snapshots 2c, 2d, 2e, and 2f depict a usage scenario where the ex-
ample application, a simple text editor, undergoes dynamic
changes at run time. The text editor in the figure is composed of
numerous components. The menu bar, buffer switcher, and file se-
lector components all interact with an “editor service” provided
by the editor component. Further, the buffer switcher implements
a special “plugin” service interface, defined in the editor package,
so that it can receive events from the editor component in order to
update its user interface when buffers are opened and/or closed.
The file selector uses a tree renderer service provided by an arbit-
rary component to render the tree structure of the file system. This
composition, depicted in figure 3, is maintained by the Gravity
framework.

Figures 2c and 2d depict the transition that occurs when the tree
renderer dynamically disappears. Since an alternative tree render-
er is available, the framework automatically repairs the file select-
or's broken dependency. Notice that the new tree renderer uses
panels to display the tree structure, instead of a tree widget like
the original, but is otherwise functionally equivalent. Figure 2e
depicts the result when the second tree renderer dynamically dis-
appears. Since no other alternatives are available, the file
selector's dependency is broken and the instance is invalidated.
The framework replaces the component with a placeholder
(currently an animated “under construction” icon). The final snap-
shot in figure 2f shows the result of a dynamic arrival of a tree

Figure 2: Gravity framework prototype usage scenario.

f) Repairs eventually occur when
alternative building blocks appear.

e) Departing building blocks may not be
repairable; functionality degrades.

d) Departing building blocks trigger auto-
adaptation repairs.

381

renderer. The framework revalidates and restores a new file se-
lector instance into the application.

In this example, the arrival and departure of components are
manually controlled, but all framework responses are automatic.
Ultimately, both halves will happen automatically and dynamic-
ally. One could imagine, for example, a component that monitors
wireless services or context information and then automatically
adds or removes components as appropriate.

 3 RELATED WORK
Component models ranging from COM [3] to CCM [9] share con-
cepts with Gravity, but none explicitly support run-time changes
other than via programmatic methods. Component-based develop-
ment environments, such as IBM's Eclipse [12] and WREN [7],
are also related to Gravity, but these environments assume that
composition cannot occur during application execution.

Service-oriented approaches include OSGi and web services.
OSGi defines a framework to deploy services in a centralized en-
vironment but leaves service dependency management to pro-
grammers. Web services target business application interoperabil-
ity. Web service composition, as in BPEL4WS [5], is realized
through flow models that represent business processes. A web ser-
vice composition can become the implementation of another ser-
vice, thus hierarchy is supported. The web service approach,
however, does not support automated service dependency man-
agement and does not cover deployment.

Composition languages [8], such as CoML [2], leverage ADL
concepts (architectural description targeted towards documenta-
tion and analysis) to define component compositions that include
scripts, coordination primitives, and adaptation mechanisms.
Script execution performs tasks such as component creation and
wiring, but is not oriented towards supporting run-time changes.

Dynamically reconfigurable systems focus on reconfiguring sys-
tems during execution [6]. These systems use explicit architecture
models and map changes in these models to the application imple-
mentation. An example of such as system is ArchStudio [11]
which is a suite that supports run-time reconfiguration of applica-
tions for an architectural style called C2. Dynamically reconfigur-

able systems provide mechanisms to change the structure of a sys-
tem, but do not focus on automating changes.

Recent related research includes autonomic computing, which
promotes systems that self-monitor and self-heal, and proactive
computing, which promotes systems that try to anticipate user
needs to trigger reconfigurations [13]. These computing trends are
mostly at a proposal stage and they focus on networked applica-
tions, instead of client applications. They do, however, depend on
context awareness to some degree and could potentially offer
some of the other needed capabilities depicted in figure 1.

 4 CONCLUSION
This paper described a research project, called Gravity, that sup-
ports a new paradigm for building client-side applications where
building blocks may appear or disappear at any time for any reas-
on (i.e., they exhibit dynamic availability). Gravity envisions a
world where integration decisions are simplified and automated,
where context is used to filter which building blocks are part of
the current application composition. Gravity supports this vision
using a service-oriented component model and framework. The
Gravity prototype, described in the paper, was implemented on
top of the OSGi services framework. Future work will concentrate
on creating predictable applications in the face of ambiguities
(such as when multiple candidate services are available), integrat-
ing context and semantics, and supporting plastic [4] (i.e., fluidly
dynamic) user interfaces.

 5 REFERENCES
[1] G. Bieber and J. Carpenter. “Introduction to Service-Ori-

ented Programming,” Whitepaper, Sept. 2001.
[2] D. Birngruber. “CoML: Yet Another, But Simple Component

Composition Language,” Proceedings of the Workshop on
Composition Languages (WCL), 2001

[3] D. Box. “Essential COM,” Addison Wesley, 1998.
[4] G. Calvary, J. Coutaz, and D. Thevenin. “Supporting Con-

text Changes for Plastic User Interfaces: A Process and a
Mechanism,” Proc. of IHM-HCI, 2001.

[5] F. Curbera et Al., “Business Process Execution Language
(BPEL) for Web Services, Version 1.0,” IBM, July 2002.

[6] C.R. Hofmeister. “Dynamic Reconfiguration of Distributed
Applications,” Ph.D. Thesis, Computer Science Department,
University of Maryland, College Park, 1993.

[7] C. Lüer and D.S. Rosenblum. “WREN - An Environment for
Component-Based Development,” published as Software En-
gineering Notes 26, 5, 2001.

[8] O. Nierstrasz and T.D. Meijler. “Requirements for a Com-
position Language,” Object-Based Models and Langages for
Concurrent Systems, Springer-Verlag, 1995.

[9] Object Management Group. “CORBA Components: Joint
Revised Submission,” August 1999.

[10] Open Services Gateway Initiative. “OSGI Service Platform,”
Specification Release 2.0, October 2001.

[11] P. Oreizy and R.N. Taylor. “On the Role of Software Archi-
tectures in Runtime System Reconfiguration,” IEEE Soft-
ware, vol 145, no. 5, Oct. 1998.

[12] OTI Inc. “Eclipse Platform Technical Overview,” 2001.
[13] R. Want, T. Pering and D. Tennenhouse, “Comparing Auto-

nomic & Proactive Computing,” IBM Systems Journal, July
2002.

Figure 3: Gravity architecture viewer showing text
editor and framework instances.

382

