
COMP 150-CCPCOMP 150-CCP
Concurrent ProgrammingConcurrent Programming

Lecture 10:
Introduction to Semaphores

Dr. Richard S. Hall
 rickhall@cs.tufts.edu

Concurrent programming – February 19, 2008

SemaphoresSemaphores

Semaphores (Dijkstra 1968) are widely used for dealing with
inter-process synchronization in operating systems. A semaphore s
is an integer variable that can hold only non-negative values.

down(s): if (s > 0) then decrement s
else block execution of the calling process

up(s): if (processes blocked on s) then awaken one of them
else increment s

The only operations permitted on s are up(s) (V = vrijgeven =
release) and down(s) (P = passeren = pass). Blocked
processes are held in a FIFO queue.

Modeling SemaphoresModeling Semaphores

To ensure analyzable models, we only model semaphores that
take a finite range of values. If this range is exceeded then we
regard this as an ERROR. N is the initial value.

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]),
SEMA[Max+1] = ERROR.

LTS?

Modeling SemaphoresModeling Semaphores

Action down is only accepted when value
v of the semaphore is greater than 0.

Action up is not guarded.

Trace to a violation
up up up up

Semaphore ExampleSemaphore Example

LOOP = (mutex.down->critical->mutex.up->LOOP).
||SEMADEMO = (p[1..3]:LOOP
 ||{p[1..3]}::mutex:SEMAPHORE(1)).

Three processes p[1..3] use a shared mutex semaphore to
ensure mutually exclusive access to critical region (i.e., access
to some shared resource).

For mutual exclusion, the semaphore initial value is 1.
Why?

Is the ERROR state reachable for SEMADEMO?

Is a binary semaphore sufficient (i.e., Max=1)?

LTS?

Semaphore ExampleSemaphore Example

Semaphores in JavaSemaphores in Java

public class Semaphore {
 private int value;

 public Semaphore (int initial)
 {value = initial;}

 public synchronized void up() {
 ++value;
 notify();
 }

 public synchronized void down()
 throws InterruptedException {
 while (value == 0) wait();
 --value;
 }
}

Semaphores are
passive objects,
therefore
implemented as
monitors.

(In practice,
semaphores are a
low-level mechanism
often used in
implementing the
higher-level monitor
construct.)

Why notify() not notifyAll() ?
Why no notify() in down() ?

Bounded Buffer ExampleBounded Buffer Example

A bounded buffer consists of a fixed number of slots. Items are
put into the buffer by a producer process and removed by a
consumer process. It can be used to smooth out transfer rates
between the producer and consumer.

Semaphore Bounded Buffer ModelSemaphore Bounded Buffer Model

const Max = 5
range Int = 0..Max

SEMAPHORE ...as before...

BUFFER = (put -> empty.down -> full.up ->BUFFER
 |get -> full.down -> empty.up ->BUFFER
).
PRODUCER = (put -> PRODUCER).
CONSUMER = (get -> CONSUMER).
||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER
 ||empty:SEMAPHORE(5)
 ||items:SEMAPHORE(0))
 @{put,get}.

The behavior of BOUNDEDBUFFER is independent of the actual
data values, and so can be modeled in a data-independent manner.

Java Semaphore Bounded BufferJava Semaphore Bounded Buffer

public interface Buffer {…}

public class SemaBuffer implements Buffer {
 …

 Semaphore items; //counts number of items
 Semaphore spaces; //counts number of spaces

 public SemaBuffer(int size) {
 this.size = size; buf = new Object[size];
 items = new Semaphore(0);
 spaces = new Semaphore(size);
 }
…
}

We use two semaphores full and empty to reflect the state of
the buffer, instead of condition variables.

We create a
separate buffer
interface to permit
alternative
implementations.

Java Semaphore Bounded BufferJava Semaphore Bounded Buffer

public synchronized void put(Object o)
 throws InterruptedException {
 spaces.down();
 buf[in] = o;
 ++count; in = (in+1) % size;
 items.up();
}

public synchronized Object get()
 throws InterruptedException {
 items.down();
 Object o = buf[out]; buf[out] = null;
 --count; out = (out+1) % size;
 spaces.up();
 return o;
}

spaces is decremented during the put()operation, which is
blocked if spaces is zero; items is decremented by the
get() operation, which is blocked if items is zero.

Java Bounded Buffer ProducerJava Bounded Buffer Producer

public class Producer implements Runnable {
 private Buffer buf;
 private String alphabet = "abcdefghijklmnopqrstuvwxyz";
 private boolean paused = true;
 public Producer(Buffer b) { buf = b; }
 public synchronized void pause() {
 paused = !paused;
 notify();
 }
 public void run() {
 try {
 int ai = 0;
 while (true) {
 synchronized (this) {
 while (paused) { wait(); }
 }
 buf.put(new Character(alphabet.charAt(ai)));
 ai = (ai + 1) % alphabet.length();
 Thread.sleep(500);
 }
 } catch (InterruptedException ex) { }
 }
}

Consumer is
similar but calls
buf.get().

Nested Monitor ProblemNested Monitor Problem

LTSA analysis predicts a possible deadlock:

Composing
 potential DEADLOCK
States Composed: 28 Transitions: 32 in 60ms
Trace to DEADLOCK:

get

The Consumer tries to get a character, but the buffer is empty.
It blocks and releases the lock on the semaphore items. The
Producer tries to put a character into the buffer, but also
blocks. Why?

This situation is known as the nested monitor problem.

Nested Monitor Program FixNested Monitor Program Fix

The only way to avoid it in Java is by careful design. In this
example, the deadlock can be removed by ensuring that the
monitor lock for the buffer is not acquired until after semaphores
are decremented.

public void put(Object o)
 throws InterruptedException {
 spaces.down();
 synchronized (this){
 buf[in] = o; ++count;
 in = (in+1) % size;
 }
 items.up();
}

Nested Monitor Model FixNested Monitor Model Fix

The semaphore actions have been moved to the producer
and consumer. This is exactly as in the implementation
where the semaphore actions are outside the monitor .

Does this behave as desired?

BUFFER = (put -> BUFFER
 |get -> BUFFER).
PRODUCER =
 (spaces.down->put->items.up->PRODUCER).
CONSUMER =
 (items.down->get->spaces.up->CONSUMER).

Nested Monitor Program FixNested Monitor Program Fix

Or perhaps use a mutex semaphore, rather than mixing monitors
and semaphores.

...
Semaphore items; //counts number of items
Semaphore spaces; //counts number of spaces
Semaphore mutex; //control access to critical region
public SemaBuffer(int size) {
 this.size = size; buf = new Object[size];
 items = new Semaphore(0);
 spaces = new Semaphore(size);
 mutex = new Semaphore(1);
}
public void put(Object o) throws InterruptedException {
 spaces.down();
 mutex.down();
 buf[in] = o; ++count;
 in = (in+1) % size;
 mutex.up();
 items.up();
}
...

Monitor Bounded Buffer ModelMonitor Bounded Buffer Model

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N]
 = (when (i<N) put->COUNT[i+1]
 |when (i>0) get->COUNT[i-1]
).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = (PRODUCER
 ||BUFFER(5)||CONSUMER).

Since monitors are higher level than semaphores, the
BOUNDEDBUFFER model and Java implementation are more
straightforward using monitors.

(similar to the Parking Lot example)

Java Monitor Bounded BufferJava Monitor Bounded Buffer

class MonitorBuffer implements Buffer {
…

 public synchronized void put(Object o)
 throws InterruptedException {
 while (count == size) wait();
 buf[in] = o; ++count; in = (in+1) % size;
 notifyAll();
 }

 public synchronized Object get()
 throws InterruptedException {
 while (count == 0) wait();
 Object o = buf[out];
 buf[out] = null; --count; out = (out+1) % size;
 notifyAll();
 return o;
 }
}

