
So far, we've been studying what business wants
clouds to do.
Now, for a brief time, let's study what computer
scientists want the cloud to do.

A real trip on the wild side

OOM more work with OOM less code.
The CALM principle.
An implementation: "Bloom".
First paper: 2011. This is hot; really hot!

Several key ideas:

A real trip on the wild side
Wednesday, April 27, 2011
10:26 AM

 Bloom Page 1

OOM=orders of magnitude
OOM more work: more useful computation
OOM less code: less drudge work.
Source: Berkeley's BOOM project.

OOM more work with OOM less code

OOM
Wednesday, April 27, 2011
10:28 AM

 Bloom Page 2

CALM: Consistency As Logical Mononicity

Example: determining the keywords mentioned
today on twitter is logically monotonic, because if
we discover more keywords, that does not make
us take anything out of the current solution set of
keywords that appear.
Example: determining the keywords that were not
mentioned yesterday is not logically monotonic,
because if we discover a new one that was
mentioned yesterday, we have to take it out of
the solution set.

A process is logically monotonic if additions to its
input do not change its present output.

In other words, something is logically monotonic if
once something is in the solution set, it always
remains there.

The CALM principle:

CALM
Wednesday, April 27, 2011
10:28 AM

 Bloom Page 3

Logically monotonic code is eventually consistent
without locking.
We can make non-monotonic code logically
monotonic by use of locking, at what CALM calls
points of order.

Compute the list of keywords that appeared
yesterday.
Let them become (eventually) consistent.
Then form the negation.
(A naïve view… I will make this more precise in a
second)

Example: to make the non-monotonic example on the
previous page monotonic, we change the problem:

The point of CALM

Points of order
Wednesday, April 27, 2011
10:36 AM

 Bloom Page 4

temporal logic,
eventual consistency, and
logical monotonicity.

A language framework for disorderly programming in
clouds. Based upon

Bloom

Bloom
Wednesday, April 27, 2011
10:41 AM

 Bloom Page 5

based on ruby
runs in a bud sandbox (like the hadoop sandbox)
supports hadoop
base data representation: key-value stores

A bloom programming language: bud

Bloom Under Development: BUD
Wednesday, April 27, 2011
10:51 AM

 Bloom Page 6

A dialect of ruby
with distributed objects and operators.

Basics of BUD

table :clouds, [:key] =>[:value]
Pasted from <https://github.com/bloom-lang/bud/blob/master/docs/getstarted.md>

a distributed object
logically, a set
:key, :value are field names (ruby atoms).
keys are unique
values need not be unique
can have keys or values that are themselves tuples

defines a table, which is a set of key-value pairs

Basic data structure: a table

Basics of BUD
Wednesday, April 27, 2011
11:21 AM

 Bloom Page 7

https://github.com/bloom-lang/bud/blob/master/docs/getstarted.md

Bud has its roots in Prolog: logic programming
It is perhaps best to think of a bud table as a set of facts.
A fact, once known, is not forgotten.
But a fact, once known, remains known.
This is the crux of logical monotonicity.

Collections, Sets, and Facts

Create new collections from them.
Merge collections into them.
You cannot delete from collections,
but you can bind collections together via difference operations.

You can do only two things with collections:

Collections, Sets, and Facts
Wednesday, April 27, 2011
2:43 PM

 Bloom Page 8

Instantly merge the key/value pairs into the
clouds array. In other words, invoke strong
consistency!

clouds <= [[1, "Cirrus"], [2,

"Cumulus"]]

Eventually merge the key/value pairs into the
clouds array. Asynchronous. Might not complete
immediately.

clouds <~ [[1, "Cirrus"], [2,

"Cumulus"]]

Deferred merge: merge the key/value pairs after
the RHS has strong consistency!

clouds <+ small_clouds

Deferred delete: remove the keys listed after
consistency of the right-hand side!

clouds <- small_clouds

Four merge operators

merges are cheap.
deletes are expensive.

Because we aim for logical monotonicity,

Four merge operators
Wednesday, April 27, 2011
11:46 AM

 Bloom Page 9

Keywords that are mentioned today but not
yesterday
today <~ some_keyword_search

yesterday <~ another_keyword_search

today <- yesterday

deferred omission, not assignment!

A simple quandary solved

We start off two asynchronous search processes to
determine "today" and "yesterday".
When today and yesterday merges finish, we present
today without yesterday's keys.

But how does this work?

A simple quandary solved
Wednesday, April 27, 2011
12:25 PM

 Bloom Page 10

Nothing we currently know about is a good analogue
of a bud table.
It is best to think of a bud table as being like a
continuous query in SQL.
It doesn't define "what to do with data you have."
It defines "what to do with data you get."

Continuous queries

Continuous queries
Wednesday, April 27, 2011
4:04 PM

 Bloom Page 11

x<=y means put data into x exactly when it arrives in y.

x<~y means put data into x some time after it arrives in
y.
x<-y means subtract y values from x values regardless
of when data arrives in x or y.
x<+y means put data into x from y even if actions on x
try to delete it!

Understanding deferred operations
Wednesday, April 27, 2011
4:06 PM

 Bloom Page 12

A deferred subtraction is not an action, but rather, a
binding.

It says: from now on, return for the value of x,
the things that are in x but not in y.
No matter how y changes.

You can bind multiple sets to x.

you cannot subtract an element from a set.
You can bind sets together, so that the binding
implements a subtraction,
while both sets are computed via monotonic logic!

Note that:

A better model of deferral
Wednesday, April 27, 2011
4:09 PM

 Bloom Page 13

The schema for a table determines what parts
constitute the key and what parts constitute the
value.

[:key]=>[:value],
The default schema for a table is

which means that an arbitrary element e has parts
e.key and e.value.

table :foo [:k1, :k2] => [:v1, :v2, :v3]

Can make any table have an arbitrary schema via,
e.g.,

[e.k1, e.k2, e.v1, e.v2, e.v3] where e is an element
constructs a table foo that consists of quintuples

Schemas

Schemas
Wednesday, April 27, 2011
2:37 PM

 Bloom Page 14

The most basic query in Bud is the implicit map (in ruby).

t.key: its key
t.value: its value

|t| each table element in turn

t2 becomes the table with only keys > 5.

t2 <~ t1 {|t| t if t.key>5}

In Pig, this is equivalent with FILTER -- BY

literally, for every t in t1, produce [t.key+1,t.value]
t2 is the array with one greater index than t1.

t2 <~ t1 {|t| [t.key+1,t.value]}

In Pig, this is equivalent with FOREACH -- GENERATE.

(Do something to every element of a table, return the
result)

Schemas are determined by the commands.
Schema mismatches during merges are fatal.

Some notes:

Queries
Wednesday, April 27, 2011
12:34 PM

 Bloom Page 15

A grouping in Bud always has the outcome of creating
aggregate data.
There is no such thing as a Pig grouping that creates
hierarchy.

t1 has schema [:game] => [:player, :score]
Example: if

totals <= t1.groupby([:player],sum(:score))
then

has schema [:player]=>[:score]
(Implicitly, the grouped thing becomes a key!)

Groupings

count, sum, choose, avg, min, max...
Builtin aggregate functions:

Groupings
Wednesday, April 27, 2011
2:49 PM

 Bloom Page 16

As in Pig, one useful construction is the cross product.

keys that are pairs of keys from t1, t2,
values that are pairs of values.

For tables t1 and t2, (t1 * t2) is a new table with

I.e., if k1 => v1 is in t1 and k2 => v2 is in t2,
then [k1,k2] => [v1,v2] is in t1 * t2

Products

In Pig, this is equivalent with CROSS

Products
Wednesday, April 27, 2011
12:34 PM

 Bloom Page 17

simple join
out <= (r * s).pairs(:r.value => :s.key) do |t1, t2|
 [t1.key, t2.value]
end
Pasted from <https://github.com/bloom-lang/bud/blob/master/docs/cheat.md>

(r*s).pairs(...condition...): do something for all pairs where
the match condition is as specified.
do...end: ruby for multi-line implicit map {…}

(:r.value and :s.key are names).
(:r.value => :s.key): a match condition for the pairs

the above Bloom statements are equivalent to this SQL:
SELECT r.key, s.value
FROM r, s
WHERE r.value = s.key;

A join is a filter for a product!

Joins
Wednesday, April 27, 2011
12:34 PM

 Bloom Page 18

https://github.com/bloom-lang/bud/blob/master/docs/cheat.md

Bud is at least as powerful as Pig

FILTER-BY
FOREACH-GENERATE
COGROUP-BY
etc…

Demonstration:

Are all implementable in Bud.

A simple claim

But wait, there's more!

A simple claim
Wednesday, April 27, 2011
3:01 PM

 Bloom Page 19

A bloom program executes in ticks.
Until a tick, all statements are considered to be declarations.
At a tick, statements are executed and the results are cached.
(Compare with pig's "store" command).
A tick is logically equivalent to a barrier synchronization, i.e., it
waits for (eventual) consistency of the affected tables.

Merges and ticks

Merges and ticks
Wednesday, April 27, 2011
11:21 AM

 Bloom Page 20

A regular table is persistent until it is deleted.
A scratch is a table that lasts only for one tick.
Purpose: to compute partial results or to serve as a
temporary table.
scratch :passing_clouds
passing_clouds <= [[3, "Nimbus"], [2,
"Cumulonimbus"]]
Pasted from <https://github.com/bloom-lang/bud/blob/master/docs/getstarted.md>

Scratches

Note that while we write a pair as [3,"Nimbus"], we
think of that as a key/value relationship 3 => "Nimbus"!

Scratches
Wednesday, April 27, 2011
11:40 AM

 Bloom Page 21

https://github.com/bloom-lang/bud/blob/master/docs/getstarted.md

A channel is a path of communication between two
(distributed) entities
An interface is a path of communication between two
(local) modules.
One can send a table through a channel or interface.
Channels are by nature eventually consistent.
Both channels and interfaces are scratches (i.e., they
are temporary).

Channels and Interfaces

Channels
Wednesday, April 27, 2011
12:35 PM

 Bloom Page 22

stdio <~ [['hello'], ['world']]
The most common channel is stdio

hello
world

prints

but not necessarily in that order!
Only <~ makes sense for channels.

order is not preserved!
delivery is not even reliable!

Caveats: when one sends facts through a channel,

The stdio channel
Wednesday, April 27, 2011
12:38 PM

 Bloom Page 23

Instantaneously transfer a message coming in on
connect to the nodelist channel.

nodelist <= connect.payloads

A simple Bud hack: make a network chat server in a
couple lines of code

Eventually respond by multi-casting the message
sent to you to all subscribers.

mcast <~ (mcast * nodelist).pairs { |m,n| [n.key, m.val] }

Pasted from <https://github.com/bloom-lang/bud/blob/master/docs/getstarted.md>

Network service in a line
Wednesday, April 27, 2011
3:09 PM

 Bloom Page 24

https://github.com/bloom-lang/bud/blob/master/docs/getstarted.md

One can do M/R queries.
One can implement services.

Bud merges the offline power of Map/Reduce and the
online power of Axis.

In the same language!
There is great power in being able to specify
consistency properties in the code itself.

Lessons learned

Lessons learned
Wednesday, April 27, 2011
3:13 PM

 Bloom Page 25

