
Why It’s Nice to be Quoted: Quasiquoting for Haskell

Geoffrey B. Mainland
Harvard School of Engineering and Applied Sciences

mainland@eecs.harvard.edu

Abstract
Quasiquoting allows programmers to use domain specific syntax
to construct program fragments. By providing concrete syntax for
complex data types, programs become easier to read, easier to
write, and easier to reason about and maintain. Haskell is an ex-
cellent host language for embedded domain specific languages,
and quasiquoting ideally complements the language features that
make Haskell perform so well in this area. Unfortunately, until now
no Haskell compiler has provided support for quasiquoting. We
present an implementation in GHC and demonstrate that by lever-
aging existing compiler capabilities, building a full quasiquoter re-
quires little more work than writing a parser. Furthermore, we pro-
vide a compile-time guarantee that all quasiquoted data is type-
correct.

Categories and Subject Descriptors D.3.3 [Software]: Program-
ming Languages

General Terms Languages, Design

Keywords Meta programming, quasiquoting

1. Introduction
Algebraic data types are one of most powerful hammers in the func-
tional programmer’s toolbox, allowing her to enforce invariants that
aid reasoning about programs and catch errors at compile rather
than run time. However, working with complex data types can im-
pose a significant syntactic burden; extensive applications of nested
data constructors are often required to build values of a given data
type, or, worse yet, to pattern match against values. Anyone who
has written a program that manipulates abstract syntax for a mod-
erately complex language can appreciate the problem as well as the
solution we propose: allow Haskell expressions and patterns to be
constructed using domain specific, programmer-defined concrete
syntax.

The Lisp world has long recognized the utility of automat-
ically constructing program fragments via quasiquotation (Baw-
den 1999). Quasiquotation allows programmers to generate code
automatically from code templates; the “quasi” in quasiquotation
refers to the fact that these code templates can contain holes that
are filled in by the programmer. The design of Scheme’s hygienic
macros (Kelsey et al. 1998) reflects decades of experience with
quasiquoting and carefully considers many of the potential pitfalls

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’07, September 30, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-674-5/07/0009. . . $5.00

surrounding quasiquotation, such as unintended variable capture.
The Haskell world has Template Haskell (Sheard and Peyton Jones
2002) which similarly allows Haskell programs to construct other
Haskell programs. These “program generating programs” are one
type of metaprogram, programs that manipulate other programs as
data. In both the Lisp and Template Haskell worlds, the language
in which the metaprogram is written, or metalanguage, is identical
to the language in which the manipulated programs are written, the
object language. There are many cases when it would be useful to
have an object language that is different from the metalanguage.
The canonical example of a metaprogram is a compiler, which typ-
ically manipulates many different intermediate object languages
before producing a binary. Other potential applications that could
benefit from a more flexible quasiquoting system include peephole
optimizers, partial evaluators, and any source-to-source transfor-
mation. The ability to quasiquote arbitrary object languages means
the programmer can think about and write programs using the con-
crete syntax best suited to the domain, be it C, regular expres-
sions, XML or some other language. Although we find support for
quasiquoting arbitrary languages most compelling in the context of
metaprogramming, quasiquoting is useful any time a complex data
type can be given concrete syntax.

In this paper, we present an extension to the GHC Haskell
compiler that allows expressions and patterns to be written using
programmer-defined syntax extensions. Our contributions are:

• A design for adding support for programmer-defined syn-
tax extensions to GHC: Our proposal builds on the work
done to support Template Haskell (Sheard and Peyton Jones
2002), both syntactically and in its implementation. The syn-
tactic scope of programmer-defined extensions in a source code
file is clearly delimited, so programmers know exactly when
they are writing user-defined syntax and when they are writing
Haskell.
• A scalable programming technique for writing quasiquot-

ers: Writing a syntax extension for our system requires only a
small amount of effort beyond that already required to write
a parser for the syntax in question. All additional effort is
needed solely to support antiquotation. We show how to mini-
mize this additional effort by leveraging the Scrap Your Boiler-
plate (SYB) (Lämmel and Peyton Jones 2003, 2004) approach
to generic programming. Although we do not present the full
details here, we have built a quasiquoter for ANSI C (with GCC
extensions), so we know that our approach scales to real lan-
guages.
• A working implementation of our design: We have fully

implemented our design as a patch against the current de-
velopment version of GHC (6.7), consisting of slightly over
300 lines of code and available for download at the follow-
ing URL: http://www.eecs.harvard.edu/∼mainland/
ghc-quasiquoting/.

The remainder of this paper is structured as follows. In Section 2
we motivate the benefit of quasiquoting through several examples
involving different object languages. Using a small language, the
untyped lambda calculus, we demonstrate in Section 3 that we can
build and use a quasiquoter by doing little more than writing a
parser for the object language being quoted. We discuss the type
safety guarantees provided by quasiquoting—and the guarantees
our approach cannot make—in Section 4. We say a few words about
our implementation in GHC in Section 5 and explore related work
in Section 6. In Section 7 we conclude and discuss possible future
approaches to providing stronger static guarantees for quoted code.

2. Motivation
Haskell has a long history as a host language for embedding do-
main specific languages (Hudak 1998; Peterson et al. 1999; Leijen
and Meijer 1999; Elliott et al. 2000; Pembeci et al. 2002). Typi-
cally these embedded languages make use of Haskell’s type sys-
tem by providing combinators that construct values representing
terms in the embedded language. The usability of the combinator
approach is enhanced by Haskell’s support for declaring new infix
operators. An alternative means to embedding a DSL is to provide
a (necessarily partial) compile function that converts a string rep-
resentation of a DSL term to its Haskell data type representation.
Providing a compile function, as the Haskell Text.Regex.Posix
library does (Kuklewicz), has the advantage of allowing language
clients to write in a syntax that is not restricted to that offered di-
rectly by Haskell. The disadvantage is that terms in the embedded
language cannot be checked until run time; voluntarily throwing
away the advantages of a strongly typed language is a shameful act
for all but the most minimal DSLs.

Flexible as Haskell’s syntax may be, it is not a good fit for
all language embeddings. Often the language designer reasons in
terms of a concrete syntax but is forced to write in terms of combi-
nators. Wouldn’t it be better to directly support use of an arbitrary
concrete syntax, thus freeing the programmer to think and write in
the same language? Beyond the “mere” syntactic issue lies an issue
of functionality: combinators may be just good enough for writing
expressions in a DSL, but because patterns in Haskell are not first
class, they can never be used to match against terms of a DSL. The
string-based approach fails us here too.

Using our approach, the DSL designer provides a pair of func-
tions that parse a DSL term’s concrete syntax and return Haskell
abstract syntax for the expression and pattern representation of the
term, respectively. These parsers are run at compile time, so the
resulting expressions (and patterns) are guaranteed to be type cor-
rect. The syntax we choose for quasiquotation is deliberately sim-
ilar to the syntax used by Template Haskell for staged computa-
tions (Sheard and Peyton Jones 2002). Whereas Template Haskell
quotes a Haskell expression using bracket-bar pairs, e.g., [|1 +
2|], we specify the concrete syntax being quoted with an addi-
tional colon and identifier following the initial open bracket. The
identifier must be bound to a Haskell tuple whose constituent mem-
bers are parsing functions for expressions and patterns, respec-
tively. Figure 2 shows a C function that is quasiquoted using our C
quasiquoting library. In the scope in which the quasiquotation oc-
curs, cfun is bound to a tuple containing parsers that take a string
as input and produce Haskell abstract syntax for the corresponding
expression and pattern, respectively. The expression int : n is an
antiquotation and causes, at run-time, the value of n to be spliced
into the abstract syntax tree for the quasiquoted C function add.

DSL designers strive to ensure that the syntactic correctness
of their language is guaranteed at compile time. Through proper
staging, quasiquoters make this goal easier to achieve—there is
potential for more work to be done at compile time, including
compile-time optimizations of DSL terms, because DSL terms can

add n =
Func (DeclSpec [] [] (Tint Nothing))

(Id "add")
DeclRoot
(Args

[Arg (Just (Id "x"))
(DeclSpec [] [] (Tint Nothing))
DeclRoot]

False)
(Block []

[Return (Just
(BinOp Add

(Var (Id "x"))
(Const (IntConst (False,n)))))])

Figure 1: Haskell syntax for the add function in the absence of
quasiquotation.

be fully constructed by a quasiquoter at compile time instead of
by combinators at run time. We now turn to several examples of
languages embedded in Haskell and demonstrate how support for
quasiquoting makes the jobs of the embedded language’s designer
and its users easier.

2.1 Quasiquoting C
Writing a compiler usually involves the use of several intermediate
languages. GHC itself has used many intermediate languages over
the years, including, but not limited to, GHC Core (Tolmach),
“Abstract C” (Peyton Jones 1992) and C-- (Peyton Jones et al.
1999). Sometimes these languages have a true external form, but
they almost always have an external form that at least exists as a
convention used by the developers when reasoning and discussing
the internal workings of the compiler. Providing concrete syntax
for these languages allows the programmer to write as she thinks;
translating ideas from the blackboard to implementation is direct,
and reasoning about code written in concrete syntax is easier.

Our own experience in embedding domain specific languages
led to the present work on quasiquotation. The embedded language
Flask (Mainland et al. 2006) is a dataflow language for sensor
networks that describes computations over streams of data. Pro-
grammers construct “dataflow graphs” that are then compiled to
NesC (Gay et al. 2003) and run on sensor network devices that have
16 bit CPUs and 10K of RAM. Operators in the dataflow graph,
such as map, are parametrized by NesC code, so it is vital that pro-
grammers be able to directly write NesC code when constructing
dataflow graphs. Figure 2 shows a Haskell function, written using
our quasiquoting library, that takes a Haskell Integer and returns
abstract syntax for a C function that adds that integer to its argu-
ment and returns the result. The same function written directly in
Haskell without any syntax extensions is shown in Figure 1. Al-
though the direct Haskell version is (barely) readable, it is not tol-
erably writable. A library of combinators would certainly ease this
pain, but direct support for C’s syntax is the ideal solution. For even
small C functions the benefit of using concrete syntax is already ap-
parent. This payoff for allowing the direct use of C concrete syntax
is even greater in the context of Flask, where programmers often
write large chunks of NesC code. Even a library of combinators is
a significant syntactic burden in these circumstances.

The readability problem becomes even more acute when in-
stead of constructing values we wish to deconstruct them via pat-
tern matching. Combinators are no help to us because patterns in
Haskell are not first class; the ability to quasiquote patterns makes
programs much more readable. Figure 3 shows a function that per-

add n = [:cfun |
int add (int x)
{

return x + $int : n$;
}
|]

Figure 2: Haskell syntax for the add function in the presence of
quasiquotation support.

cfold :: Data a
⇒ a
→ a

cfold a = everywhere (mkT f) a
where

f :: Exp → Exp
f [:cexp | $int :x$ + $int :y$|] = [:cexp | $int :x + y$|]
f [:cexp | $int :x$− $int :y$|] = [:cexp | $int :x− y$|]
f [:cexp | $int :x$ ∗ $int :y$|] = [:cexp | $int :x ∗ y$|]
f [:cexp | $int :x$ / $int :y$|] = [:cexp | $int :x/y$|]
f [:cexp | $int :x$ % $int :y$|] = [:cexp | $int :x ‘mod‘ y$|]
f exp = exp

Figure 3: Implementing constant folding for C.

forms bottom-up constant folding on a C parse tree, making use
of the SYB (Lämmel and Peyton Jones 2003) Data type class and
functions everywhere and mkT to apply the function f to the parse
tree using a bottom-up traversal. Although we would expect this
“optimization” to be of little use when our parse tree is destined
for compilation by a production C compiler, for intermediate lan-
guages used by a compiler this sort of optimization is typical. In-
stead of being obfuscated by a mess of nested constructor applica-
tions, the constant folding transformation’s effects on an abstract
syntax tree are immediately clear to any reader.

The Pan embedded DSL for image creation and manipula-
tion (Elliott et al. 2000) also generates C code from DSL expres-
sions. Unlike Pan, Flask terms are actually parametrized by C code,
so our need for quasiquoting is more pressing. However, Pan’s code
generation facilities would undoubtedly benefit from the use of our
C quasiquoting library.

2.2 An x86 Peephole Optimizer
Peephole optimizers operate on streams of assembly instructions,
typically replacing short instruction sequences by more efficient
sequences. Pattern matching is of fundamental importance to peep-
hole optimization, and a clear demonstration of the advantage of
pattern quasiquotation. Figure 4 shows one case of a peephole opti-
mizer in which a redundant comparison instruction is eliminated.
Here antiquoted values are signified with a leading & character
since the $ character is already part of the assembler’s syntax. The
pattern shown in the code binds the variables s, r1, r2, r3, r4 and
lbl; these bound variables are then used to produce the optimized
assembly instruction sequence.

The advantage to representing peephole optimization—or in
general any data transformation—using concrete syntax is that the
transformation becomes much easier to reason about and maintain.
Code written in this style is self-documenting, whereas the com-
parison elimination written using the standard data constructor ap-
plication syntax would require a separate description of what was
actually going on to be easily understood.

peep :: [Asm]→ [Asm]
peep [:asm | mov&s $&r1, &r2

cmp $&r3, &r4

je &lbl |] : rest
| r3 ≡ r1 ∧ r4 ≡ r2

= [:asm | mov&s $&r1, &r2

jmp &lbl |] : rest
...

Figure 4: One case of a simple x86 peephole optimizer.

2.3 Regular Expressions
As previously mentioned, the Haskell Text.Regex.Posix regular
expression library parses regular expressions at run time, rather
than compile time. Consider the following code to construct a
regular expression object:

let r = mkRegex "(foo"

Despite being obviously wrong, this code fragment will compile.
The programmer’s error will manifest itself as a runtime error. With
quasiquoting support we can do better:

let r = [:re | (foo |]

Now our error becomes a compile-time error because the quasiquoter
re runs when the program is compiled rather than when the pro-
gram is executed.

2.4 XML
There is a small industry in the functional languages community
geared towards domain specific languages for manipulating and
processing XML, from HaXML (Wallace and Runciman 1999),
which is embedded in Haskell, onward (Atanassow et al. 2003;
Hosoya et al. 2005; Hosoya and Pierce 2003; Benzaken et al. 2003).
Embedded languages like HaXML are open to two possible repre-
sentation alternatives for XML documents, an internal data struc-
ture that can represent the contents of any XML document that
nonetheless provides structure beyond simple strings, and a rep-
resentation based on Haskell data types derived from a DTD defi-
nition. The former offers flexibility, and the latter offers the static
guarantee that only well-formed XML output will be generated.
One of the key benefits of quasiquoting, particularly in the con-
text of XML processing, is that it allows the programmer to write
code that is neutral to the choice of representation for the code be-
ing quoted. By allowing XML fragments to be written in concrete
XML syntax, the program text is decoupled from the representation
of XML documents, and the programmer is free to move between
typed and untyped representations without having to rewrite code.

Figure 5 shows a DTD for books (taken, slightly modified,
from (Atanassow et al. 2003)) and its HaXML translation to
Haskell data types. Although elided here, this translation also in-
cludes a parser and printer for the translated data types; the parser
can easily be extended to allow inlining of XML in Haskell code
using the technique described in Section 3. Assuming this quoter
is bound to the variable book, the following is legal code in the
presence of our extension:

soe = [:book|
<book>

<title> The Haskell School of Expression </title>
<author> Paul Hudak </author>
<date> 2000 </date>
<chapter> Problem Solving, Programming,

and Calculation

<!ELEMENT book (title,author,date,(chapter)*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT chapter (#PCDATA)>

data Book = Book Title Author Date [(Chapter)]
deriving (Eq,Show)

newtype Title = Title String
deriving (Eq,Show)

newtype Author = Author String
deriving (Eq,Show)

newtype Date = Date String
deriving (Eq,Show)

newtype Chapter = Chapter String
deriving (Eq,Show)

Figure 5: The book DTD and its corresponding translation to Haskell
data types.

</chapter>
<chapter> A Module of Shapes: Part I </chapter>
<chapter> Simple Graphics </chapter>

</book>
|]

Switching between the typeful representation of XML and the
typed representation only requires redefining the value of book,
likely a one line change. By using concrete syntax, the programmer
is insulated from this change in representation.
Thanks to our regular expression quasiquoter, we can now search
for books by Paul Hudak:

hudakSearch :: [Book]→ [Book]
hudakSearch books = filter f books

where
f :: Book → Bool
f (Book (Author auth))
| Just ← [:re | Hudak |] ‘matchRegex ‘ auth

= True
f = False

3. The Gritty Details: Writing a Quasiquoter
At least in the case of expressions, quasiquoting can be done us-
ing only Template Haskell by splicing a Haskell expression that
calls a parsing function with a string as its argument, and indeed
that is almost exactly how we implement expression quasiquoting
in GHC. There are three contributions of our technique that go be-
yond what pure Template Haskell has to offer, two of which are
of technical merit and one of which is important from a usability
standpoint. First, unlike Template Haskell, our quasiquoting sys-
tem allows patterns, including binding occurrences of pattern vari-
ables, to be quoted—support for splicing patterns is currently miss-
ing from GHC. Second, we show how to use the SYB approach
to generic programming to reflect values back into the language,
which greatly facilitates writing quasiquoters and is useful even in
the pure Template Haskell world. The third contribution we make
is that quasiquotation parsers are handed a source code location in
addition to the string to be parsed. This is of vital importance in
terms of usability as it allows syntax errors within quoted code to
be pinpointed precisely.

We illustrate the design of our quasiquoting system through a
simple quoted language: the untyped lambda calculus. Our imple-

mentation progresses from a standard parser and evaluator to a full
quasiquoter with support for antiquotation. Although this example
is simple, it touches on all aspects of our quasiquoting system in-
cluding both the use of a quasiquoter and the details of its imple-
mentation. More complex object languages will of course require
more work, but in our experience building a full quasiquoter for C,
we found that the techniques we describe in this section scale.

Our simple untyped lambda calculus implementation is shown
in Figure 6, and the parser’s definition is shown in Figure 7. Ob-
viously we have yet to make use of quasiquoting. As a first step,
let us consider the case of subst that handles application. Instead
of using abstract syntax, we would like to use concrete syntax to
specify both the pattern binding e1 and e2 and the expression that
returns the application of e1’ to e2’. The new application case for
substitution is:

subst [:lam | $exp :e1 $exp :e2 |] x y =
let e1 ′ = subst e1 x y

e2 ′ = subst e2 x y
in

[:lam | $exp :e1′ $exp :e2′ |]

As previously mentioned, the syntax we choose for quasiquota-
tion is deliberately similar to the syntax used by Template Haskell
for staged computations (Sheard and Peyton Jones 2002). In our
rewritten subst function, lam is bound to a pair of parsers, lame
and lamp. The function lame returns abstract syntax for a Haskell
expression, and the lamp function returns abstract syntax for a
Haskell pattern.

The new case for application also makes use of antiquotation:
the four variables e1, e2, e1’ and e2’ are all Haskell variables, not
lambda calculus variables. The dollar sign indicates antiquotation,
and exp: indicates that an expression is being antiquoted. For our
small lambda language there are two syntactic categories we wish
to antiquote: variables and expressions. This syntax is specific to
the particular language being quoted, and in general there will be
more than two syntactic categories the programmer will want to
antiquote.

Because lame and lamp return abstract syntax for Haskell pat-
terns and expressions, respectively, we need a data type that rep-
resents Haskell abstract syntax. Fortunately Template Haskell pro-
vides a convenient library containing just the data types we need
as well as functions for manipulating these data types. The quota-
tion parsers lamp and lame make use of this library, and have the
types1:

lame :: (String , Int , Int)→ String → TH .ExpQ
lamp :: (String , Int , Int)→ String → TH .PatQ

lam = (lame, lamp)

The first argument is the source code location of the start of the
string being parsed, consisting of a file name, line number and
column. The second argument is the text to be parsed. The result
is a value in Template Haskell’s quotation monad.

3.1 Maximizing Parser Re-use
We now have three functions that all must parse the concrete syntax
for lambda expressions: our original parser, the parser that produces
Haskell abstract syntax for expressions, and the parser that pro-
duces Haskell abstract for patterns. Two of these parsers, those for
Haskell expressions and patterns, must also handle anti-quotation.
We would like to re-use as much of our parser parse as possible.

1 Throughout our examples we use the qualified package name TH as an
abbreviation for Language.Haskell.TH

data Var = V String
deriving (Eq)

data Exp = Var Var
| Lam Var Exp
| App Exp Exp

allBinders :: [Var]
allBinders = [V [x] | x ← [’a’ . . ’z’]] ++

[V (x : show i) | x ← [’a’ . . ’z’],
i ← [1 :: Integer . .]]

free :: Exp → [Var]
free (Var v) = [v]
free (Lam v e) = free e \\ [v]
free (App e1 e2) = free e1 ‘union‘ free e2

occurs :: Exp → [Var]
occurs (Var v) = [v]
occurs (Lam v e) = v : occurs e
occurs (App e1 e2) = occurs e1 ‘union‘ occurs e2

subst :: Exp → Var → Exp → Exp
subst e x y = subst ′ (allBinders \\ occurs e ‘union‘ occurs y) e x y

where
subst ′ :: [Var]→ Exp → Var → Exp → Exp
subst ′ e@(Var v) x y

| v ≡ x = y
| otherwise = e

subst ′ fresh e@(Lam v body) x y
| v ≡ x = e
| v ∈ free y = Lam v ′ (subst ′ fresh′ body ′ x y)
| otherwise = Lam v (subst ′ fresh body x y)

where
v ′ :: Var
fresh′ :: [Var]
(v ′ : fresh′) = fresh

body ′ :: Exp
body ′ = subst ′ (error "fresh variables not so fresh")

body v (Var v ′)

subst ′ fresh (App e1 e2) x y =
let e′1 = subst ′ fresh e1 x y

e′2 = subst ′ fresh e2 x y
in

App e′1 e′2

eval :: Exp → Exp
eval e@(Var) = e
eval e@(Lam) = e
eval (App e1 e2) =

case eval e1 of
Lam v body → eval (subst body v e2)
e′1 → App e′1 (eval e2)

Figure 6: Abstract syntax and evaluator for the untyped lambda cal-
culus.

Ignoring the problem of antiquotation for a moment, there are two
possible solutions:

1. Write one-off functions that convert values with types Var and
Exp to an appropriate Haskell abstract syntax representation.
Doing so would require four functions in our case and is tedious
and error-prone even for the small lambda language example.

2. Copy and paste, creating two new versions of the parser. One
version will directly return Haskell abstract syntax for a Haskell
pattern, and the other will return Haskell abstract syntax for

parens p = between (symbol "(") (symbol ")") p

whiteSpace = many $ oneOf " \t"

small = lower < |> char ’_’

large = upper
idchar = small < |> large < |> digit < |> char ’\’’

lexeme p = do x ← p
whiteSpace
return x

symbol name = lexeme $ string name

ident :: CharParser () String
ident = lexeme $

do c ← small
cs ← many idchar
return $ c : cs

var :: CharParser () Var
var = do v ← ident

return $ V v

exp :: CharParser () Exp
exp = do es ← many1 aexp

return $ foldl1 App es

aexp :: CharParser () Exp
aexp = (try $ do v ← var

return $ Var v)
< |> do symbol "\\"

v ← var
symbol "."
e ← exp
return $ Lam v e

< |> parens exp

parse :: Monad m ⇒ String → m Exp
parse s =

case runParser p () "" s of
Left err → fail $ show err
Right e → return e

where
p = do e ← exp

eof
return e

Figure 7: Parser for the untyped lambda calculus.

an expression. This is potentially a maintenance nightmare.
Furthermore, we lose a lot of the benefits of the type checker:
a value of type TH.ExpQ is Haskell abstract syntax for an
expression, but knowing this tells us nothing about the type of
the Haskell expression represented by the abstract syntax. This
expression could be an Integer, a String or have any other
type—we know only that it is syntactically correct, not that it is
type correct.

Option 1 would be much more appealing if we could write
generic functions that convert a value of any type into Haskell ab-
stract syntax representing that value. Then we could simply com-
pose parse with such a generic function and the result would be a
quasiquoter. As it turns out, this is quite easy to do using the SYB
approach to generic programming, support for which is included
in GHC (Lämmel and Peyton Jones 2003, 2004). The astute reader
will note that the parse function does not handle antiquotation.
Using generic programming we can in fact accommodate antiquo-

tation, but to simplify our explanation we will temporarily ignore
this detail.

To use the SYB approach to generic program we must slightly
modify the Var and Exp data types and add deriving clauses so
that instances for the Data and Typeable classes are automatically
generated by GHC. Adding these automatic derivations reflects
information about the data types into the language so that we can
now manipulate values of these types generically. We need two
generic functions: one that converts a value to Haskell abstract
syntax for a pattern representing that value, and one that converts
a value into Haskell abstract syntax for an expression representing
the value. The functions dataToExpQ and dataToPatQ, defined
in the Appendix, are just the functions we desire. With these two
simple functions, any value of a type that is a member of the
Data type class can be converted to its representation in Haskell
abstract syntax as either a pattern or an expression. This allows us
to trivially write lame and lamp as follows:

lame :: (String , Int , Int)→ String → TH .ExpQ
lame s = parse s >>= dataToExpQ

lamp :: (String , Int , Int)→ String → TH .PatQ
lamp s = parse s >>= dataToPatQ

By using generic programming, we can take a parser and create
expression and pattern quasiquoters for the language it parses with
only four lines of code, including type signatures! This holds not
just for our simple object language, but for any object language.

3.2 Adding Support for Antiquotation
Without antiquotation our quasiquoters are not very useful—they
can only be used to write constant patterns and expressions. Adding
support for antiquotation is a must to make quasiquoting useful
and can be done with only slightly more than four lines of code.
First we must extend our abstract syntax to include support for
antiquotes. Changing the parser is unavoidable, but we can still
write a single parser and reuse it to parse pattern quasiquotes,
expression quasiquotes and plain syntax without any antiquotation
by setting an appropriate flag in the parsing monad. The key point
here is that in all three case the parser is producing a value with the
type of whatever data type is used to represent the object language’s
abstract syntax.

SYB defines combinators that extend a generic function with
type-specific cases. We use these combinators to convert antiquotes
in the object language to appropriate Haskell abstract syntax. Fig-
ure 8 shows all code required to support full quasiquotation for
the lambda language, not including changes to the parser which
are shown in Figure 9. The two new data constructors AV and AE
are for antiquoted variables and expressions, respectively. For each
syntactic category that is antiquoted, two additional functions must
be written: one to generate the appropriate Haskell abstract syntax
for patterns, and one to generate Haskell abstract syntax for expres-
sions. These functions are combined using the extQ SYB combi-
nator to form a single generic function, and this function is then
passed to the function that reifies values as Haskell abstract syntax
(either dataToExpQ or dataToPatQ).

Although this technique minimizes the changes one must make
to a parser to add support for antiquotation, it has the unfortu-
nate requirement that we must also modify the data type used by
the parser. Ideally we could extend the original data type used
to represent abstract syntax to add support for antiquotation con-
structs; this is an instance of the expression problem, formulated
by Wadler (Wadler 1998). A recent proposal for solving the ex-
pression problem in Haskell by providing direct support for open
data types and open functions (L oh and Hinze 2006) would bene-
fit quasiquoters everywhere, but our approach is nonetheless mini-
mally intrusive.

data Var = V String
| AV String

deriving (Eq,Typeable,Data)

data Exp = Var Var
| Lam Var Exp
| App Exp Exp
| AE String

deriving (Typeable,Data)

antiVarE :: Var → Maybe TH .ExpQ
antiVarE (AV v) = Just $ TH .varE $ TH .mkName v
antiVarE = Nothing

antiExpE :: Exp → Maybe TH .ExpQ
antiExpE (AE v) = Just $ TH .varE $ TH .mkName v
antiExpE = Nothing

antiVarP :: Var → Maybe TH .PatQ
antiVarP (AV v) = Just $ TH .varP $ TH .mkName v
antiVarP = Nothing

antiExpP :: Exp → Maybe TH .PatQ
antiExpP (AE v) = Just $ TH .varP $ TH .mkName v
antiExpP = Nothing

lame :: (String, Int , Int)→ String → TH .ExpQ
lame s = parse s >>=

dataToExpQ (const Nothing ‘extQ ‘ antiVarE
‘extQ ‘ antiExpE)

lamp :: (String, Int , Int)→ String → TH .PatQ
lamp s = parse s >>=

dataToPatQ (const Nothing ‘extQ ‘ antiVarP
‘extQ ‘ antiExpP)

Figure 8: Code required to support full quasiquotation for the lambda
language (not including changes to the parser).

var :: CharParser () Var
var = ...

< |> do string "$var:"

v ← ident
return $ AV v

aexp :: CharParser () Exp
aexp = ...

< |> do string "$exp:"

v ← ident
return $ AE v

Figure 9: Changes to the untyped lambda calculus parser required to
support antiquotation.

It should also be noted that the approach we have outlined here
only generates Haskell abstract syntax for constructor applications—
the output of a quasiquotation will never be a lambda term. Of
course quasiquoters are free to generate any Haskell abstract syn-
tax they wish, including lambda terms, but this will require more
work on the part of the quasiquoter writer. It will also complicate
the reuse of an existing parser that directly generates abstract syn-
tax values. In other words, for object languages that are represented
using an abstract syntax data type, parser re-use comes almost for
free; for object languages that must in general be “compiled” to
Haskell terms with sub-terms that are lambda expressions there is
extra work to be done.

4. Type Safety Guarantees
All quasiquoters are run at compile time, so any parsing errors
or errors in generated Haskell abstract syntax will therefore be
caught at compile time. Furthermore, all generated Haskell abstract
syntax must pass the type checker. We can state the safety guarantee
that holds for compiled quasiquoted code as follows: any invariant
that holds for the data type that represents the abstract syntax for
the quasiquoted code also holds in the compiled program. If we
were to use quasiquotation to construct large expressions in our
lambda language and output them as text, this safety guarantee
would statically ensure that all output lambda expressions were
syntactically correct. For the more sophisticated C quasiquotation
system, our safety guarantee statically ensures that all generated C
code is syntactically correct (assuming that any value whose type is
that of C abstract syntax can be printed as valid concrete C syntax).

However, our quasiquoter for the C language cannot statically
guarantee that any generated C code is type correct with respect
to C’s type system unless this invariant can somehow be encoded
in the abstract syntax representation used by the quasiquoter. One
could imagine that the C parser could also perform type checking,
but this would still not resolve the issue in the presence of antiquo-
tation because of the open code problem. Consider the following
quasiquoted C code:

int inc($ty:t$ x)
{

return x + 1;
}

Here we have antiquoted the type, t, of the argument to the function
inc. A C parser cannot type check this code because it cannot
know what type t represents! In general we cannot make any static
guarantees about the type-correctness of generated C code—we can
only guarantee that it is syntactically correct. Using GADTs (Xi
et al. 2003) allows a static type safety guarantee to be enforced
for some quoted languages. In general if the object language’s
type system can be embedded in Haskell’s type system, then using
an appropriate GADT encoding we can statically guarantee that
all quasiquoted code is type correct with respect to the object
language’s type system. We leave a more thorough exploration of
this question to future work.

5. Implementation
Our implementation of quasiquoting in GHC is in the form of a
patch against GHC 6.7 consisting of about 300 lines of code. We
reused much of the machinery that already exists in GHC to support
Template Haskell. Supporting quasiquoting of expressions was a
trivial addition because GHC already supports quoting of Haskell
expressions—we only had to add code to call the quasiquoter.
Regrettably, GHC does not support Template Haskell’s pattern
quotation facility at all and generates a compile-time error if pattern
quotations are used. Adding full support for Template Haskell’s
pattern quotation was a larger chunk of work than we were willing
to bite off, so we limited ourselves to supporting only the pattern
quotation mechanism described in this paper. This necessitated a
fair amount of additional work to handle the binding occurrences
that arise from antiquotation of patterns.

6. Related Work
A great deal of work has been done on metaprogramming in the
functional language community, including MetaML (Taha and
Sheard 1997), MetaOCaml (Taha 2003) and Template Haskell (Sheard
and Peyton Jones 2002). In these systems the object language (the
quoted language) is always the same as the metalanguage. MetaML

and MetaOCaml provide additional type checking for quoted code;
in MetaOCaml the quoted expression .<1+2>. has type int code
instead of just type code. Template Haskell assigns all quoted code
the same type. While we agree with the authors of these systems
that metaprogramming is an important tool, we believe that it is
equally important to provide access to many object languages by
allowing for extensible quasiquoting. Allowing the metaprogram-
mer to manipulate programs in any language she chooses instead of
restricting her to work exclusively with the same language at both
the meta- and object level greatly expands the possible applications
of metaprogramming.

The system that bears the most similarities to our work is
camlp4 (de Rauglaudre 2003). In fact we were motivated to add
support for quasiquoting to GHC after using camlp4 in a substan-
tial metaprogramming application. Unlike our system, one of the
goals of camlp4 is to allow the programmer to arbitrarily change the
syntax of the host language. We wish only to add support for pro-
viding concrete syntax for data. Quasiquotaton modules also run at
compile time in camlp4, so they provide the same static safety guar-
antee that our system provides. However, we believe that Haskell’s
type system, in particular GADTs, will allow stronger invariants to
be encoded in data types so that more than syntactic correctness of
generated code can be statically verified. The major advantage of
our approach over that of camlp4 is that we demonstrate how to use
generic programming to reuse a single parser to parse quasiquoted
patterns, quasiquoted expressions and plain syntax that does not
include antiquotes. Because OCaml does not support generic pro-
gramming out of the box, in camlp4 this would require three sepa-
rate parsers, each generating different representations of the same
concrete syntax.

Baars and Swierstra’s work on syntax macros (Baars and Swier-
stra 2004) aims to provide functionality similar to camlp4 in the
context of Haskell. Although more general than our approach, syn-
tax macros are unfortunately not available in GHC. We aim to
make a small, conservative extension to existing GHC functional-
ity narrowly-focused on supporting programmer-defined concrete
syntax for complex data types, not to provide a general-purpose
mechanism for redefining the language accepted by the compiler.
Baars and Swierstra also use phantom types and explicit evidence
passing to enforce invariants on typed abstract syntax that go be-
yond mere syntactic correctness, although GADTs now provide the
same functionality (and then some) with less effort.

Wadler’s proposal for views (Wadler 1987) allows pattern
matching to be abstracted away from the data type being matched.
Our work is orthogonal to the work on views: our goal is to pro-
vide a mechanism for describing patterns in terms of programmer-
defined concrete syntax. Closer to our work is the work on first
class patterns (Tullsen 2000). First class patterns would allow em-
bedded DSL designers to define combinators for pattern matching
as well as term generation, but we still believe that even in the
presence of first class patterns quasiquoting is a desirable feature.
In any case, neither views nor first-class patterns are implemented
in any real-world Haskell compiler; quasiquotation is implemented
and available today.

7. Conclusions and Future Work
Quasiquoting is a powerful tool. By making programs easier to
read and write through providing concrete syntax for describing
data, it also aids the programmer in reasoning about her programs.
Because quasiquoting operations are all performed at compile time,
any invariant that is enforced by a data type is statically guaranteed
to hold for quasiquoted data of that type. These benefits are not only
significant, but cheap. By leveraging generic programming, writing
a full quasiquoter requires little more work than writing a parser.

We expect that many Haskell programmers will immediately put
this new tool to use.

It remains to be seen how best to address the typing issues that
arise when using quasiquoting. It should be noted that these issues
are not new, but arise in any metaprogramming system. They are
simply more apparent in our system because we support an un-
limited number of object languages and have already addressed
the low-hanging fruit by providing a static guarantee that gener-
ated code is syntactically correct. We alluded to one problem with
open code in Section 4. Another type of open code is that in which
the code has free variables at the object language level rather than
free variables at the metalanguage level introduced by antiquota-
tion. For example, consider the MetaOCaml quoted code .<x>.
where the variable x is free. What type should we assign this code
fragment?

This open code problem is not easily solved. MetaML and
MetaOCaml allow free variables in quoted code as long as they
are lexically bound in the surrounding metalanguage. This solution
would not necessarily work when the object language and metalan-
guage are not the same. It is also somewhat unsatisfying—we may
wish to allow free variables in open code that are lexically bound
by a context into which the quoted code is later spliced. If we were
to frame the type checking problem as a constraint problem, then
open code could carry a set of type constraints that would be stati-
cally checked against all possible contexts in which the quoted code
could be spliced. Allowing each object language to provide its own
constraint generating and constraint solving engines could allow us
to guarantee not only that all generated code is syntactically cor-
rect, but also that it is type correct. We leave the exploration of
such an extensible type system to future work.

References
F. Atanassow, D. Clarke, and J. Jeuring. Scripting XML with generic

haskell. Technical Report UU-CS-2003, Institute of Information and
Computing Sciences, Utrecht University, 2003.

Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self inspecting code.
In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell, pages 69–79, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-850-4. doi: http://doi.acm.org/10.1145/1017472.1017485.

Alan Bawden. Quasiquotation in lisp. In Partial Evaluation and Semantic-
Based Program Manipulation, pages 4–12, 1999. URL citeseer.ist.
psu.edu/bawden99quasiquotation.html.

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an
XML-centric general-purpose language. ACM SIGPLAN Notices, 38(9):
51–63, September 2003.

Daniel de Rauglaudre. Camlp4 reference manual, 2003. URL http:
//caml.inria.fr/pub/docs/manual-camlp4/index.html.

Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded
languages. In SAIG, pages 9–27, 2000. URL citeseer.ist.psu.
edu/elliott00compiling.html.

David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesC language: A holistic approach to networked
embedded systems. In Proc. Programming Language Design and Im-
plementation (PLDI), June 2003.

Haruo Hosoya and Benjamin C. Pierce. Xduce: A statically typed XML
processing language. ACM Trans. Inter. Tech., 3(2):117–148, 2003.
ISSN 1533-5399. doi: http://doi.acm.org/10.1145/767193.767195.

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. ACM Transactions on Programming Languages
and Systems (TOPLAS), 27(1):46–90, January 2005. Preliminary ver-
sion in ICFP 2000.

Paul Hudak. Modular domain specific languages and tools. In ICSR 98,
1998. URL http://haskell.org/frp/dsl.pdf.

S. Kamin. Standard ML as a meta-programming language. Technical report,
University of Illinois at Urbana-Champaign, 1996. URL citeseer.
ist.psu.edu/kamin96standard.html.

Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5

report on the algorithmic language Scheme. ACM SIGPLAN Notices, 33
(9):26–76, 1998. URL citeseer.ist.psu.edu/kelsey98revised.
html.

Chris Kuklewicz. Text.Regex.Posix. http://haskell.
org/ghc/docs/6.6.1/html/libraries/regex-posix/
Text-Regex-Posix.html.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. ACM SIGPLAN Notices, 38(3):
26–37, March 2003. Proceedings of the ACM SIGPLAN Workshop on
Types in Language Design and Implementation (TLDI 2003).

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2004),
pages 244–255. ACM Press, 2004.

Daan Leijen and Erik Meijer. Domain specific embedded com-
pilers. In Proc. 2nd USENIX Conference on Domain-Specific
Languages’99, 1999. URL http://research.microsoft.com/
∼emeijer/Papers/HaskellDB.pdf.

Andres L oh and Ralf Hinze. Open data types and open functions. In PPDP
’06: Proceedings of the 8th ACM SIGPLAN symposium on Principles
and practice of declarative programming, pages 133–144, New York,
NY, USA, 2006. ACM Press. ISBN 1-59593-388-3. doi: http://doi.acm.
org/10.1145/1140335.1140352.

Geoffrey Mainland, Matt Welsh, and Greg Morrisett. Flask: A language
for data-driven sensor network programs. Technical Report TR-13-06,
Harvard University, 2006.

Izzet Pembeci, Henrik Nilsson, and Greogory Hager. Functional reac-
tive robotics: An exercise in principled integration of domain-specific
languages. In Principles and Practice of Declarative Programming
(PPDP’02), October 2002. URL http://haskell.cs.yale.edu/
yale/papers/ppdp02/ppdp02.ps.gz.

John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Con-
trolling robots with Haskell. Lecture Notes in Computer Science, 1551:
91–105, 1999. URL citeseer.ist.psu.edu/peterson99lambda.
html.

Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: a portable
assembly language that supports garbage collection. In Interna-
tional Conference on Principles and Practice of Declarative Program-
ming, September 1999. URL http://www.eecs.harvard.edu/
∼nr/pubs/c--gc-abstract.html.

Simon L. Peyton Jones. Implementing lazy functional languages on stock
hardware: The spineless tagless g-machine. Journal of Functional
Programming, 2(2):127–202, 1992. URL citeseer.ist.psu.edu/
peytonjones92implementing.html.

Tim Sheard and Simon Peyton Jones. Template metaprogramming for
Haskell. In Manuel M. T. Chakravarty, editor, ACM SIGPLAN Haskell
Workshop 02, pages 1–16. ACM Press, October 2002.

Walid Taha. A gentle introduction to multi-stage programming. In Domain-
Specific Program Generation, pages 30–50, 2003.

Walid Taha and Tim Sheard. Multi-stage programming with explicit an-
notations. In Proceedings of the ACM-SIGPLAN Symposium on Partial
Evaluation and semantic based program manipulations PEPM’97, Am-
sterdam, pages 203–217. ACM, 1997.

Andrew Tolmach. An external representation for the GHC core language.
URL citeseer.ist.psu.edu/tolmach01external.html.

Mark Tullsen. First class patterns. In E. Pontelli and V. Santos Costa, edi-
tors, Practical Aspects of Declarative Languages, Second International
Workshop, PADL 2000, volume 1753 of Lecture Notes in Computer Sci-
ence, pages 1–15. Springer-Verlag, January 2000.

Philip Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Steve Munchnik, editor, Proceedings, 14th Symposium

on Principles of Programming Languages, pages 307–312. Associa-
tion for Computing Machinery, 1987. URL citeseer.ist.psu.edu/
wadler86views.html.

Philip Wadler. The expression problem. http://www.daimi.au.dk/
∼madst/tool/papers/expression.txt, 1998.

Malcolm Wallace and Colin Runciman. Haskell and XML: Generic com-
binators or type-based translation? In Proceedings of the Fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP
99), volume 34–9, pages 148–159, N.Y., 27–29 1999. ACM Press. URL
citeseer.ist.psu.edu/wallace99haskell.html.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In POPL, pages 224–235, 2003. URL http://doi.acm.
org/10.1145/640128.604150.

A. Full Versions of dataToExpQ and dataToPatQ

dataToQa mkCon mkLit appCon antiQ t =
case antiQ t of

Nothing →
case constrRep constr of

AlgConstr →
appCon con conArgs

IntConstr n →
mkLit $ TH .integerL n

FloatConstr n →
mkLit $ TH .rationalL (toRational n)

StringConstr (c :)→
mkLit $ TH .charL c

where
constr :: Constr
constr = toConstr t
constrName :: Constr → String
constrName k =

case showConstr k of
"(:)"→ ":"

name → name
con = mkCon (TH .mkName (constrName constr))
conArgs = gmapQ (dataToQa mkCon mkLit

appCon antiQ)
t

Just y → y

dataToExpQ :: Data a
⇒ (∀a.Data a ⇒ a → Maybe (TH .Q TH .Exp))
→ a
→ TH .Q TH .Exp

dataToExpQ = dataToQa TH .conE TH .litE (foldl TH .appE)

dataToPatQ :: Data a
⇒ (∀a.Data a ⇒ a → Maybe (TH .Q TH .Pat))
→ a
→ TH .Q TH .Pat

dataToPatQ = dataToQa id TH .litP TH .conP

