An Overview of the
Alpha AXP™ 21164 Micro-
Architecture

The World’s Highest
Performance Microprocessor

John Edmondson and Paul Rubinfeld
Digital Equipment Corporation
Semiconductor Engineering Group
Hudson, MA
Alpha AXP 21164 Overview

Key Attributes

- 4-way issue superscalar
- Large on-chip L2 cache
- 7-stage integer pipeline
- 9-stage floating point pipeline
- Emphasis on low latency at high clock rate
- High-throughput memory subsystem
Instruction Issue Pipeline

Instruction Cache (8KB)

Prefetch Buffer

Instruction Buffer

Instruction Slot

Instruction Issue

Issue Conflict Checker

to floating point multiply pipeline
to floating point add pipeline
to integer pipeline 0
to integer pipeline 1

S0 S1 S2 S3
Instruction Prefetching

- Aggressive prefetching from L2 cache using high-bandwidth capability
 - At least three 32-byte blocks ahead of the current issue point
 - Continuous integer instruction issue possible out of L2 cache (2 per cycle)
 - 60% of peak issue rate possible out of L2 cache (2.4 per cycle)
Execution Pipeline

IntRegs

Integer Pipeline 0: arith, logical, ld/st, shift

Integer Pipeline 1: arith, logical, ld, br/jmp

Int mul

FPRegs

FP Pipeline 0: add, subtract, compare, FP br

FP Pipeline 1: multiply

FP div

S3 S4 S5 S6 S7 S8
Instruction Latency

<table>
<thead>
<tr>
<th>Operation</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most integer ops</td>
<td>1</td>
</tr>
<tr>
<td>CMOV</td>
<td>2</td>
</tr>
<tr>
<td>Integer multiply</td>
<td>8-16</td>
</tr>
<tr>
<td>Floating point ops</td>
<td>4</td>
</tr>
<tr>
<td>Loads (L1 cache hit)</td>
<td>2</td>
</tr>
</tbody>
</table>

Special Case Bypass

- CMOV or conditional BR dependent on a compare or logical operation: 0

Example:

- `CMP R1, R2, R3`
- `BEQ R3, LABEL`
High-Throughput Load Execution

Addr from integer pipeline 0

Dual-Ported L1 Data Cache (8Kbyte, write thru)

Addr from integer pipeline 1

Miss Address File (MAF) 6 entry

Bus Address File (BAF) 2 entry

On-Chip L2 Cache (96Kbyte, 3-way set assoc., writeback, pipelined)
Miss Address File Details

MAF merges loads to the same cache block

Up to 21 loads

Multiple loads merge, regardless of order

Up to two register file fills per cycle

<table>
<thead>
<tr>
<th>Address</th>
<th>Rn</th>
<th>Rn</th>
<th>Rn</th>
<th>Rn</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Rn</th>
<th>Rn</th>
<th>Rn</th>
<th>Rn</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
L3 Cache (off-chip)

- L3 cache is a direct-mapped writeback superset of on-chip L2 cache
- Up to 2 reads (or outstanding read commands) in L3 cache
- Programmable wave pipelining for L3 cache
- L3 cache is optional
Latency & Bandwidth of Memory Operations

<table>
<thead>
<tr>
<th></th>
<th>Latency (cycles)</th>
<th>Bandwidth (bytes/cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Data Cache</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>L3 Cache</td>
<td>≥12</td>
<td>≤4</td>
</tr>
</tbody>
</table>

- L1 cache block size is 32 bytes
- L2 and L3 cache block sizes are each 64 bytes (with a 32-byte block size option)
Improvements Over the Previous Generation

- Reduced key latencies

<table>
<thead>
<tr>
<th></th>
<th>21164</th>
<th>21064/21064A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift/byte ops</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Integer multiply</td>
<td>8-16</td>
<td>19-23</td>
</tr>
<tr>
<td>CMP → BR</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FP latency</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>L1 data cache</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- Wider issue rate
 - 4 vs. 2

- Cycle time improvement
 - Greater than simple technology scaling
Estimated Performance Results

- Better than 1 SPECint92 per MHz
- Better than 1.5 SPECfp92 per MHz
- Better than 2 TPS per MHz
Alpha AXP Processor Roadmap

Relative Performance (SPECint)

10
9
8
7
6
5
4
3
2
1
0

Highest Performance Family
EV5 Family
High Integration Family
21066 Family
21068 Family
Embedded Family

LPA6
ECA6
EV6

21064-150
21064A-275
21064-200
21066-166
21068-66
Summary

- The Alpha AXP 21164 is totally new design
 - Quad instruction issue
 - On-chip secondary cache
 - Achieves short latency at a high speed clock

- It contains significant micro-architecture and circuit advances over the first implementation

- This chip is the world’s highest performance microprocessor