How would you define triangulation of a point set?

- Decomposition/partition of convex hull (into triangles!)
- Get triangular faces
- Edges only between points; no crossings
 - And no points leftover

How would you triangulate? How fast are we hoping for?

- Constructive: Insert edges while possible (proof?)
 - How many edges might we insert?
- Start with convex hull, maintain a weakly simple polygon
 - Add edges to new points
- Incremental/online
$V - E + F = 2$

* F includes outer-face
applied to graph
w triangular outer face:
\[V - E + F = 2 \]
\[(n+3)(e+h+6)(f+h+3) \]

augment given triangulation:
(h = points on hull)

* F includes outer face
* E = \(\frac{3F}{2} \) \rightarrow 3 edges/\(\Delta \)

\[V - E + \frac{2}{3}E = 2 \]
\[V - 2 = \frac{1}{3}E \]
\[E = 3V - 6 \]

\[(e+h+6) = (3n+9) - 6 \]
\[e = 3n - h - 3 \]

given:
n blue points
e pink edges
f triangular faces
Triangulation by creating a weakly simple polygon

Start with C.H.
Sweep to connect one point
sweep again... anywhere
Now we have a weakly simple polygon.

Triangulate
Assume hull = triangle

Start with $V = E = 3$

Incremental triangulation
Start with $V=E=3$

add +1 +3 each time

Join triangle to whatever random point you select inside
Start with $V=E=3$
add $+1 +3$ each time
shown in parallel

More arbitrary points inside
Start with $V=E=3$
add +1 +3 each time
If hull > triangle split problem

Can also do arbitrary incremental (online)

last added

How much time did these methods take?
the ART GALLERY (GUARDING) PROBLEM

- \rightarrow a guard can see to ∞
 (but not through walls)
 in all directions

- \rightarrow walls covered with $\&$ art

place fixed guards s.t. all art is seen
the ART GALLERY (GUARDING) PROBLEM

- → a guard can see to ∞ (but not through walls) in all directions
- → walls covered with art

place fixed guards s.t. all art is seen

visibility region of top guard leaves two gaps
the ART GALLERY (GUARDING) PROBLEM

• ➔ a guard can see to ∞ (but not through walls) in all directions

→ walls covered with art

place fixed guards s.t. all art is seen

one gap covered

still two gaps

top guard was necessary
the ART GALLERY (GUARDING) PROBLEM

- → a guard can see to oo (but not through walls) in all directions

→ walls covered with $\&$ art

place fixed guards s.t. all art is seen

last guard suffices
Given an n-gon art gallery

How many guards might we need?

You need a guard in this region

and it won’t help you guard any of the others

\(\frac{n}{3} \)
Can we match the $\left\lfloor \frac{n}{3} \right\rfloor$ bound
or are even more guards sometimes necessary?
Can we match the $\left\lceil \frac{n}{3} \right\rceil$ bound
or are even more guards sometimes necessary?
Can we match the $\lceil \frac{n}{3} \rceil$ bound
or are even more guards sometimes necessary?
Can we match the $\left\lfloor \frac{n}{3} \right\rfloor$ bound or are even more guards sometimes necessary?
Can we match the $\left\lfloor \frac{n}{3} \right\rfloor$ bound or are even more guards sometimes necessary?
Can we match the $\frac{n}{3}$ bound or are even more guards sometimes necessary?
Can we match the $\lceil \frac{n}{3} \rceil$ bound
or are even more guards sometimes necessary?
Can we match the $\left\lfloor \frac{n}{3} \right\rfloor$ bound or are even more guards sometimes necessary?
Can we match the $\left\lfloor \frac{n}{3} \right\rfloor$ bound
or are even more guards sometimes necessary?
Can we match the $\lceil \frac{n}{3} \rceil$ bound or are even more guards sometimes necessary?
Can we match the $\left\lfloor \frac{n}{3} \right\rfloor$ bound
or are even more guards sometimes necessary?
Can we match the $\lfloor \frac{n}{3} \rfloor$ bound
or are even more guards sometimes necessary?

How many coins of each color?

\[\bullet + \bullet + \bullet = n \]

8 \quad 9 \quad 9

\[\leq \frac{n}{3} \text{ for } \geq 1 \text{ color} \]

...And...

every wall sees that color

DONE
Notice we placed guards on vertices

\[\text{If obviously this suffices for matching } \lceil \frac{n}{3} \rceil \]

\[\text{what if we had an "easily guardable" polygon?} \]

\[\text{Can interior guards help more?} \]

\[\text{yes} \]

(star-shaped)
What if I can afford a few more guards, and I don't want to spend time triangulating?

- A guard on every vertex: OK
- A guard on every convex vertex: No