Computational Geometry

Chapter 3

Polygons and Triangulation

On the Agenda

- The Art Gallery Problem
- Polygon Triangulation
Art Gallery Problem

- Given a simple polygon \(P \), say that two points \(q \) and \(r \) can see each other if the open segment \(qr \) lies entirely within \(P \).
- A point \(p \) guards a region \(R \subseteq P \) if \(p \) sees all points \(q \in R \).
- Given a polygon \(P \), what is the minimum number of guards required to guard \(P \), and what are their locations?

Observations

- The entire interior of a convex polygon is visible from any interior point. (Why?)
- A star-shaped polygon requires only one guard located in its kernel.
Art Gallery Problem: Easy Upper Bound

- **Theorem** (to be proven later): Every simple planar polygon with \(n \) vertices has a triangulation into \(n-2 \) triangles.
- \(n-2 \) guards suffice for an \(n \)-gon:
 - Subdivide the polygon into \(n-2 \) triangles (triangulation).
 - Place one guard in each triangle.

Diagonals in Polygons

- A diagonal of a polygon \(P \) is a line segment connecting two vertices, which lies entirely within \(P \).
- **Theorem**: Every polygon with \(n>3 \) vertices has a diagonal.
- **Proof**: Find the leftmost vertex \(v \). Connect its two neighbors \(u \) and \(w \). If this is not a diagonal there must be other vertices inside the triangle \(uvw \). Connect \(v \) with the vertex \(v' \) farthest from the segment \(uw \). This must be a diagonal.

- **Questions**:
 1. Why is \(v'v \) a diagonal?
 2. Why not connect \(v \) with the leftmost vertex inside \(uvw \)?
Diagonals in Polygons

- A diagonal of a polygon P is a line segment connecting two vertices, which lies entirely within P.

- **Theorem:** Every polygon with $n>3$ vertices has a diagonal.

- **Proof:** Find the leftmost vertex v. Connect its two neighbors u and w. If this is not a diagonal there must be other vertices inside the triangle uvw. Connect v with the vertex v' farthest from the segment uw. This must be a diagonal.

- **Questions:**
 1. Why is $v'v$ a diagonal?
 2. Why not connect v with the leftmost vertex inside uvw?

Complexity of Triangulations

- **Theorem:** Any triangulation of a simple polygon with n vertices consists of $n-3$ diagonals and $n-2$ triangles.

- **Proof:** By induction on n:
 - Basis: A triangle ($n=3$) has a triangulation (itself) with no diagonals and one triangle.
 - Inductive step:
 1. For an n-vertex polygon, construct a diagonal dividing the polygon into two polygons with n_1 and n_2 vertices such that $n_1+n_2-2=n$. (Why ”-2“?)
 2. Triangulate the two parts of the polygon.
 3. Diagonals: $(n_1-3)+(n_2-3)+1=(n_1+n_2-2)-3=n-3$;
 Triangles: $(n_1-2)+(n_2-2)=(n_1+n_2-2)-2=n-2$.

Center for Graphics and Geometric Computing, Technion
$\Theta(n^2)$-Time Polygon Triangulation

- **Algorithm:**
 1. Input: A simple n-gon.
 2. Find a diagonal.
 3. Call the algorithm recursively for the two subpolygons.

- **Analysis:**
 \[T(n) = O(n) + \max_{n_1 + n_2 = n+2} \left(T(n_1) + T(n_2) \right) \]

- **Solution:**
 \[T(n) = \Theta(n^2) \]

- **Space:** $\Theta(n)$

Art Gallery Problem: Upper Bound

- **Color the vertices of the (triangulated) polygon with three colors such that there is no edge between two vertices with the same color.**

- **Question:** Why is this possible?
 (Hint: The dual of any triangulation is a tree with vertex degree at most 3. Full proof later.)

- **Corollary:** All triangles are 3-colored.

- **Pick the color that is the least used. This color is used in at most $\lfloor n/3 \rfloor$ vertices.**

- **Place a guard on each vertex with this color. Due to the corollary all the triangles are guarded!**

- \Rightarrow **New upper bound:** $\lfloor n/3 \rfloor$
3-Coloring

- **Theorem**: Every triangulated polygon can be 3-colored.
- **Proof**: Consider the dual graph.
 - Since every diagonal disconnects the polygon, the dual graph is a tree.
 - Since every node in the graph is the dual of a triangle, its degree is ≤ 3.
 - Since any tree has a leaf, any triangulation has an ear (a triangle containing two polygon edges).
 - Finally, by induction on n:
 - Basis: Trivial if $n=3$.
 - Induction: Cut off an ear. 3-color the remaining $(n-1)$-gon.
 Color the nth vertex with the third color different from the two on its supporting edge.
A Matching Lower Bound

- Fact: There exists a polygon with \(n \) vertices, for which \(n/3 \) guards are necessary.

- Therefore, \(\lceil n/3 \rceil \) guards are needed in the worst case.

O(\(n \log n \))-Time Polygon Triangulation

- A simple polygon is called monotone with respect to a direction \(v \) if for any line \(\ell \) perpendicular to \(v \), the intersection of the polygon with \(\ell \) is connected.
- A polygon is called monotone if there exists any such direction \(v \).
- A polygon that is monotone with respect to the x- (or y-) axis is called x- (or y-) monotone.

Question 1: How can we check in O(\(n \)) time whether a polygon is y-monotone?

Question 2: What is a polygon that is monotone with respect to all directions?
Triangulation Algorithm – cont.

1) Partition the polygon into y-monotone pieces (“חתיכות מונוטוניות”).

2) Triangulate each y-monotone piece separately.

y-Monotone Polygons

- Classifying polygon vertices:
 - A start (resp., end) vertex is a vertex whose interior angle is less than \(\pi \) and its two neighboring vertices both lie below (resp., above) it.
 - A split (resp., merge) vertex is a vertex whose interior angle is greater than \(\pi \) and its two neighboring vertices both lie below (resp., above) it.
 - All other vertices are regular.
y-Monotone Polygons (cont.)

- **Theorem:** A polygon without split and merge vertices is y-monotone.

- **Proof:** Since there are only start/end/regular vertices, the polygon must consist of two y-monotone chains.

- To partition a polygon to monotone pieces, eliminate split (merge) vertices by adding diagonals upward (downward) from the vertex. Naturally, the diagonals **must not** intersect!

Monotone Partitioning

- Classify all vertices.
- Sweep the polygon from top to bottom.
- Maintain the edges intersected by the sweep line in a **sweep line status** (SLS sorted by x coordinates).
- Maintain vertex events in an event queue (EQ sorted by y coordinates). All events are known in advance!
- Eliminate split/merge vertices by connecting them to other vertices (to be explained later).
- For each edge \(e \), define \(helper(e) \) as the lowest vertex (seen so far) above the sweep line **visible** to the right of the edge.
- \(helper(e) \) is initialized by the upper endpoint of \(e \).
Monotone Partitioning (cont.)

- A split vertex may be connected to the helper vertex of the edge immediately to its left.
- However, a merge vertex should be connected to a vertex which has not been processed yet!
- Clever idea: Every merge vertex v is the helper of some edge e, so that v will be resolved either
 - when e disappears; or
 - when v ceases to be the helper of e.
 It will be the last time v can be resolved!

Monotone Partitioning Algorithm

- Input: A polygon P, given as a list of vertices ordered counterclockwise. The edge e_i immediately follows the vertex v_i.
- Construct EQ containing the vertices of P sorted by their y-coordinates. (In case two or more vertices have the same y-coordinate, the vertex with the smaller x-coordinate has a higher priority.)
- Initialize SLS to be empty.
- While EQ is not empty:
 - Pop vertex v;
 - Handle v.
 (No new events are generated during execution.)
- Idea: No split/merge vertex remains unhandled!
Monotone Partitioning

- Handling a start vertex (v_i):
 - Add e_i to SLS
 - $helper(e_i) := v_i$

- Implementation detail:
 Only “left” edges (for which the polygon is on the right) need a helper and are thus kept in the status.

Monotone Partitioning

- Handling an end vertex (v_i):
 - If $helper(e_{i-1})$ is a merge vertex, then connect v_i to $helper(e_{i-1})$ (Why?!)
 - Remove e_{i-1} from SLS
Monotone Partitioning

- Handling a split vertex (v_i):
 - Find in SLS the edge e_j directly to the left of v_i
 - Connect v_i to $\text{helper}(e_j)$
 - $\text{helper}(e_j) := v_i$
 - Insert e_i into SLS
 - $\text{helper}(e_i) := v_i$

- Handling a merge vertex (v_i):
 - If $\text{helper}(e_{i-1})$ is a merge vertex, then connect v_i to $\text{helper}(e_{i-1})$
 - Remove e_{i-1} from SLS
 - Find in SLS the edge e_j directly to the left of v_i
 - If $\text{helper}(e_j)$ is a merge vertex, then connect v_i to $\text{helper}(e_j)$
 - $\text{helper}(e_i) := v_i$
Monotone Partitioning

- Handling a regular vertex \((v_i) \):
 - If the polygon’s interior lies to the left of \(v_i \) then:
 - Find in SLS the edge \(e_j \) directly to the left of \(v_i \)
 - If \(\text{helper}(e_j) \) is a merge vertex, then connect \(v_i \) to \(\text{helper}(e_j) \)
 - \(\text{helper}(e_j) := v_i \)
 - Else:
 - If \(\text{helper}(e_{i-1}) \) is a merge vertex, then connect \(v_i \) to \(\text{helper}(e_{i-1}) \)
 - Remove \(e_{i-1} \) from SLS
 - Insert \(e_i \) into SLS
 - \(\text{helper}(e_i) := v_i \)

Proof of Correctness: Split Vertices

- Assume that the split vertex \(v_5 \) was connected to \(v_2 \).
- Assume that \(s = v_5v_2 \) intersects another original edge \(e \).
- Draw horizontal lines through \(v_5 \) and \(v_2 \).
- Where can the endpoint of \(e \), that is to the left of \(s \), be?
 - Below \(t_1 \): Impossible. (Why?)
 - Between \(t_1 \) and \(t_2 \): Ditto. (Why?)
 - Above \(t_2 \): Ditto. (Why?)

- Now assume that \(s \) intersects another diagonal. Why can’t that be?
- Conclusion:
 Split events are resolved correctly.
Proof of Correctness (cont.)

- Merge vertices: Exercise.

- Complete the details of the proof as an exercise.

Triangulating a y-monotone Polygon

In Theory

- Sweep the polygon from top to bottom.
- Greedily triangulate anything possible above the sweep line, and then forget about this region.
 - When we process a vertex v, the unhandled region above it always has a simple structure: Two y-monotone (left and right) chains, each containing at least one edge. If a chain consists of two or more edges, it is reflex, and the other chain consists of a single edge whose bottom endpoint has not been handled yet.
 - Each diagonal is added in $O(1)$ time.
Triangulating a Y-monotone Polygon

In Practice

- Continue sweeping while one chain contains only one edge, while the other edge is concave.
- When a “convex edge” appears in the concave chain, triangulate as much as possible by connecting the new vertices to all visible vertices of the concave chain.
- When the edge in the other chain terminates, connect it to all the vertices of the concave chain using a “fan”.
- Time complexity: $O(k)$, where k is the complexity of the polygon.

Question: Why?!
Historical Perspective

- $O(n^2)$: Diagonal insertion
- $O(n \log n)$: Lee and Preparata
 - (Monotone decomposition, 1977)
 - Avis and Toussaint (1981)
 - Chazelle (1982)
- Optimal??
- $O(n \log \log n)$: Tarjan and Van Wyk (1988)
- $O(n \log^* n)$: Randomized:
 - Clarkson, Tarjan, and Van Wyk (1989)
 - Seidel (Trapezoidal decomposition, 1991)
 - Devillers (1992)
- $\Theta(n)$: Optimal (yet deterministic):
 - Chazelle (1991)