Any diagonal splits a polygon into 2 chains. How balanced can this split be?

1. Can you find a diagonal to split $\frac{n}{2} \times \frac{n}{2}$? $\frac{9n}{10} \times \frac{n}{10}$?

2. What if I already give you a triangulation?
Finding a $\frac{n}{4} \vee \frac{3n}{4}$ split
given a triangulation

- Arbitrarily split polygon into 4 chains of size $\sim \frac{n}{4}$
Finding a $\frac{n}{4} \sqrt{\frac{3n}{4}}$ split given a triangulation

- Arbitrarily split polygon into 4 chains of size $\sim \frac{n}{4}$
- If you find a diagonal between $C_1 - C_3$ or $C_2 - C_4$ then done.
Finding a $\frac{n}{4} \sqrt{3n} \frac{3n}{4}$ split given a triangulation

- Arbitrarily split polygon into 4 chains of size $\sim \frac{n}{4}$
- If you find a diagonal between C_1-C_3 or C_2-C_4 then done.
- Not all diagonals can be within their chain. E.g., C_1-C_1 or C_4-C_4.
 Why? Because you would get a quad leftover.
Finding a $\frac{n}{4} \sqrt{3n^2} \text{ SPLIT GIVEN A TRIANGULATION}$

- Arbitrarily split polygon into 4 chains of size $\sim \frac{n}{4}$

- If you find a diagonal between C_1-C_3 or C_2-C_4 then Done.

- Not all diagonals can be within their chain e.g. C_1-C_1 or C_4-C_4.
 Why? Because you would get a quad leftover.

- So, there exists a diagonal from C_1-C_2, wlog
Finding a $\frac{n}{4} v \frac{3n}{4}$ split:

...cont.

- there exists a diagonal from $C_1 - C_2$
Finding a \(\frac{n}{4} \text{ vs } \frac{3n}{4} \) split:

...cont.
- there exists a diagonal from \(C_1 - C_2 \)
- if many, pick the one with endpoints \(P_1, P_2 \) closest to \(x_3 \) & \(x_4 \)
Finding a $\frac{n}{4} \cup \frac{3n}{4}$ split:

- ...cont.
- there exists a diagonal from $C_1 - C_2$
- if many, pick the one with endpoints P_1, P_2 closest to x_3, x_4
- Where is the apex of triangle $P_1P_2P_3$?
 \[\text{Where isn't it?} \]
Finding a $\frac{n}{4} \times \frac{3n}{4}$ split:

...cont.

- there exists a diagonal from C_1 - C_2
- if many, pick the one with endpoints P_1 - P_2 closest to x_3 & x_4

- Where is the apex of triangle $P_1P_2P_3$?

→ Where is it not?

- P_3 is in C_3 or C_4

→ So we find a diag C_1 - C_3 or C_2 - C_4

Done
Finding a $\frac{n}{4}v \frac{3n}{4}$ split:

... cont.

- there exists a diagonal from $C_1 - C_2$
- if many, pick the one with endpoints P_1P_2 closest to x_3 & x_4

- Where is the apex of triangle $P_1P_2P_3$? ➔ where isn’t it?

- P_3 is in C_3 or C_4

➔ So we find a diag C_1-C_3 or C_2-C_4

$O(n)$ to find it ➔