"ULTIMATE PLANAR C.H. ALGORITHM?"

KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

Upper hull only
"ULTIMATE PLANAR C.H. ALGORITHM?"

KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

divide-conquer-merge

Upper hull only
"ULTIMATE PLANAR C.H. ALGORITHM?"
KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

divide-conquer-merge
divide-merge-conquer!

Upper hull only
"ULTIMATE PLANAR C.H. ALGORITHM?"

KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

divide-merge-conquer

Upper hull only

Diagram showing points and lines partitioning the space.
Goal: Get $O(n \log h)$

- We can’t sort anything.
- How do we split? Median $O(n)$
- We can also afford $O(n)$ to merge, i.e., to find a bridge.
Finding a Bridge in Linear Time

Let the bridge have slope k^*.

Suppose we guess slope k.

Sweep k.

Guess $k < k^*$

\rightarrow sweep stops on blue

Guess $k > k^*$

\rightarrow sweep stops on red

Guess $k = k^*$

\rightarrow confirm bridge

$O(n)$ time to guess & verify
- Arbitrarily pair up points
- Arbitrarily pair up points
- Find median slope
- Guess $K = \text{median}$
Case 1: \(k > k^* \)

Half of the pairs have slope \(k' > k \), so \(k' > k^* \).
Case 1: $k > k^*$

Half of the pairs have slope $k' > k$, so $k' > k^*$.

k^* can't sweep below b.

α can't be on bridge (it could be on C.H.)
Case 2

$K < K^*$

Half of the pairs have slope $K' \leq K$, so $K' < K^*$

K^* can't sweep below a, and b can't be on bridge (it could be on C.H.)

$a_x < b_x$
Case 1: $K > K^*$

Half of the pairs have slope $K' > K$, so $K' > K^*$

\square can't be on bridge (it could be on C.H.)

Case 2: $K < K^*$

Half of the pairs have slope $K' < K$, so $K' < K^*$

\bigcirc can't be on bridge (it could be on C.H.)

THROW AWAY ONE POINT (a or b) FROM HALF THE PAIRS

$\frac{1}{4}$ points
If we guess wrong: THROW AWAY ONE POINT (a or b) FROM HALF THE PAIRS

Then arbitrarily pair remaining points & "guess" again

Time: $c \cdot n$ for first wrong guess
$c \cdot \frac{3n}{4}$ for second " "
$c \cdot \frac{3}{4} \cdot \frac{3n}{4}$ for third.

etc

total: $O(n)$
"Prune & Search"

If you can throw out a constant fraction of your input whenever you fail, then you will still have a good algorithm.

\[T(n) = F(n) + T\left(\frac{n}{c}\right) \quad [c > 1] \]

- \(O(\log n) \) \(O(1) \) : Binary search \([c=2]\)
- \(O(n) \) \(O(n) \) : Finding a bridge \([c=\frac{4}{3}]\)
- \(O(n^k) \) \(O(n^k) \) \(n^k + \frac{n^k}{2^k} + \frac{n^k}{4^k} + \ldots + \frac{n^k}{2^{i_k}} \) \([c=2]\)
- \(O(2^n) \) \(O(2^n) \) \(2^n + 2^{n-1} + 2^{n-2} + \ldots + 2 \) \([c=2]\)

search leaves, if "fail" then search parents etc
Example of linear-time bridge finding

- Unknown bridge
- Upper hull only
- Median separator
- $X_{	ext{min}}$
- $X_{	ext{max}}$
Randomly pair points
Find median slope
Test slope:
- too steep
- only left side is extremal
Because slope is too steep:
Discard left endpoints of steeper pairs
Subset: \[\leq \frac{3}{4} \text{ original} \]
Random pairs
Discard left endpoints of steeper pairs.
New random pairs and median slope
Too steep yet again
Discard...
Fourth attempt on $\leq \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}$ original
Discard right endpoints of shallower pairs
Find median slope.
Extreme finds one point on each side.

DONE
We know how to find a bridge in linear time.

Might as well throw out potential non-C.H. pts inside... it's "free"
We know how to find a bridge in linear time.

Might as well throw out potential non-C.H. pts inside ... it's "free"

Of course we might not throw anything out.
We know how to find a bridge in linear time.

Solve 2 smaller problems with \(n/2 \) half points each.

That still only gives us \(O(n \log n) \).

Do we have to find a bridge that “splits” the hull evenly?

If we at least find one new bridge on both sides then we get \(O(\log h) \) depth.

If we don’t find a bridge on one side, we must have thrown out \(n/2 \) pts.
Cost tree

Example

\[\frac{c \cdot n}{2} \rightarrow \text{first bridge} \]

\[\frac{c \cdot n}{4} \]

\[\times \]

\[\frac{c \cdot n}{4} \rightarrow \text{"only" 3 bridges} \]

Tree must have exactly \(h \) nodes

Actually a good thing
Cost tree:

- First bridge:
 - $c \cdot n$

- 2 more bridges:
 - $c \cdot n^\frac{1}{2}$
 - $c \cdot n^\frac{1}{2}$
 - $c \cdot n^\frac{1}{4}$

- "Only" 3 bridges:
 - $c \cdot n^\frac{1}{4}$

Balanced case:

- Depth $O(\log h)$
- Work $O(n \log h)$

h can be $O(n)$
Cost tree

- First bridge
- 2 more bridges
- "Only" 3 bridges
- Exactly \(h \) nodes

Unbalanced case

- \(O(\log n) \) depth
- \(O(n) \) work

\[c \cdot n \]

\[c \cdot n^{\frac{1}{2}} \]

\[c \cdot n^{\frac{1}{4}} \]

\[c \cdot n^{\frac{1}{8}} \]

If you keep getting "unbalanced" hull edges, you will run out of points quickly, i.e., it can't keep happening! In this case, \(h \) cannot be \(O(n) \)!

(Unlike, say, quick-hull)
Cost tree

- $c \cdot n$
 - $c \cdot \frac{n}{2}$
 - $c \cdot \frac{n}{4}$
 - $c \cdot \frac{n}{4}$
 - $c \cdot \frac{n}{4}$
 - $c \cdot \frac{n}{4}$
 - $c \cdot \frac{n}{2}$
 - $c \cdot \frac{n}{4}$
 - $c \cdot \frac{n}{4}$

→ first bridge

→ 2 more bridges

→ "only" 3 bridges

exactly h nodes

\[\text{Swap nodes: } A < c \cdot \frac{n}{4} \]

(\& recursively the same)

~ANALYSIS?

for any tree
Every node ascends only. Weight per level: less than full tree case.
We get a full tree: depth $\log h$ \[O(n \cdot \log h)\]

See web notes for analysis (which isn't hard)