Convex Hull of Simple Polygon

Ideas?
Remember Graham scan?

1) Sort
2) Locally establish convexity
Step 1 of Graham scan essentially constructs a polygon (what kind?)
Let's run part 2 again.

The local checking can be visualized with 3 coins:

1 2 3
Let's run part 2 again

The local checking can be visualized with 3 cows

Initial placement starting with two extreme points

→ must make a 3 turn
Let's run part 2 again.

The local checking can be visualized with 3 coins.

Advance while 5.
Let's run part 2 again.

The local checking can be visualized with 3 coins.

Advanced until C

pop
Let's run part 2 again

The local checking can be visualized with 3 cows:

1 2 3

popped & backtracked
Let's run part 2 again

The local checking can be visualized with 3 coins
Let’s run part 2 again.

The local checking can be visualized with 3 coins.

1 2 3
Let's run part 2 again.

The local checking can be visualized with 3 cows.

1 2 3
Let's run part 2 again

The local checking can be visualized with 3 coins

1 2 3
Let's run part 2 again

The local checking can be visualized with 3 coins

1 2 3
Let's run part 2 again.

The local checking can be visualized with 3 coins.
Let's run part 2 again

The local checking can be visualized with 3 coins

This is the 3-coins algorithm
a.k.a. Sklansky scan

Remember it's O(n) after polygonizing
Another example

Notice that polygon order ≠ angular order
Another example

etc
Once more
This method can fail
Notice that if we scanned clockwise, we'd have the opposite result.

What is "deep"?
Externally visible

$P_7 \ldots P_{14}$: POCKET

$P_7 P_{14}$: LID

$P_1 \ldots P_5$: POCKET

$P_{17} \ldots P_{20}$: pocket
Not externally visible, but weakly externally visible (WEV)

Every point in the pocket is visible from:

- Some point outside CH
- Some point on LID
CLAIM: Sklansky scan works on W.E.V.

• No convex hull vertex can be deleted \(\iff \) we only delete C

• Treat each pocket separately
 \(\rightarrow \) can use induction
 \(\rightarrow \) You are given a WEV pocket
 \(\rightarrow \) Assume smaller WEV pockets can be handled
 \(\rightarrow \) Discard a vertex to get a smaller WEV pocket
Claim: a pocket is WEV if its vertices are WEV.

For every edge, endpoints s, t, see s', t' on lid.

2 main cases:

In all cases, every interior point sees lid.
Base case: trivial

When we delete a right turn: we join.

\(e \) doesn't intersect polygon. This would imply:
\(\Rightarrow \) one of the endpoints of \(e \) would not be wex

So we get a simple polygon but also every vertex is still wex.

\(\Rightarrow \) no ray to infinity crossed through cut triangle.
MELKMAN'S ALGORITHM

• Note: not the first $O(n)$ C.H. algo, but it is the simplest.
• It is an online algorithm: at any time you have the C.H. of the current input. No pre-scanning.
$P_1 \ldots P_n$: polyline

P_k: last vertex
to make it onto hull
$P_1 \ldots P_n$: polyline

P_k: last vertex to make it onto hull

L: 1st hull vertex CCW from P_k

R: 1st hull vertex CW from P_k
$P_1 \ldots P_n$: polyline

P_k: last vertex to make it onto hull

Red region: left of L_{P_k} and left of R_{P_k}

L: 1st hull vertex CCW from P_k

R: 1st hull vertex CW from P_k
\(P_1 \ldots P_n : \text{polyline} \)

\(P_k : \text{last vertex to make it onto hull} \)

Red region: left of \(\overrightarrow{L_{P_k}} \) and left of \(\overrightarrow{R_{P_k}} \)

Green region: right of \(\overrightarrow{L_{P_k}} \) and right of \(\overrightarrow{R_{P_k}} \)

\(L : 1\text{st hull vertex CCW from } P_k \)

\(R : 1\text{st hull vertex CW from } P_k \)
$P_1 \ldots P_n$: polyline

P_k: last vertex to make it onto hull

Red region: left of $\overrightarrow{L_{P_k}}$ and left of $\overrightarrow{R_{P_k}}$

Green region: right of $\overrightarrow{L_{P_k}}$ and right of $\overrightarrow{R_{P_k}}$

Blue region: Red \cap Green

L: 1st hull vertex CCW from P_k

R: 1st hull vertex CW from P_k
After finding P_k, ignore all vertices (if any) that do not fall in RGB regions.
$P_1 \ldots P_n$: polyline

P_k: last vertex to make it onto hull

L: 1st hull vertex CCW from P_k

R: 1st hull vertex CW from P_k

need to update hull

After finding P_k
ignore all vertices (if any)
that do not fall in RGB regions.

Eventually, we scan all input or we get a new hull vertex.
$P_1 \ldots P_n$: polyline

P_k: last vertex to make it onto hull

After finding P_k, ignore all vertices (if any) that do not fall in RGB regions.

Eventually, we scan all input or we get a new hull vertex.
After finding P_k
ignore all vertices (if any) that do not fall in RGB regions.
Eventually, we scan all input or we get a new hull vertex.
$P_1 \ldots P_n$: polyline

P_k: last vertex to make it onto hull

L: 1st hull vertex CCW from P_k

R: 1st hull vertex CW from P_k

If we get a new hull vertex, P_{n+1}
$P_1...P_n$: polyline

P_k: last vertex to make it onto hull

If we get a new hull vertex, P_{n+1}:
- If in red, then restore convexity by popping at top.

L: 1st hull vertex CCW from P_k
R: 1st hull vertex CW from P_k
\(P_1 \ldots P_n: \) polyline

\(P_k: \) last vertex to make it onto hull

if we get a new hull vertex, \(P_{n+1}\)

if in green then restore convexity by popping at bottom

\(L: \) 1st hull vertex CCW from \(P_k\)

\(R: \) 1st hull vertex CW from \(P_k\)
$P_1, ..., P_n$: polyline

P_k: last vertex to make it onto hull

L: 1st hull vertex CCW from P_k

R: 1st hull vertex CW from P_k

if we get a new hull vertex, P_{n+1}

if in red then restore convexity by popping at top

if in green then restore convexity by popping at bottom

finally push P_{n+1}
if we get a new hull vertex, P_{n+1}

- if in red then restore convexity by popping at top
- if in green then restore convexity by popping at bottom

finally push P_{n+1}
If we get a new hull vertex, P_{n+1}

- If in red, then restore convexity by popping at top.
- If in green, then restore convexity by popping at bottom.
- Finally push P_{n+1}.
if we get a new hull vertex, \(P_{n+1} \)

- if in red then restore convexity by popping at top
- if in green then restore convexity by popping at bottom

finally push \(P_{n+1} \)
if we get a new hull vertex, P_{n+1}

if in red then restore convexity by popping at top

if blue
 if in green then restore convexity by popping at bottom
finally push P_{n+1}
if we get a new hull vertex, p_{n+1}

if in red then restore convexity by popping at top

if blue

if in green then restore convexity by popping at bottom

finally push p_{n+1}
If we get a new hull vertex, \(P_{n+1} \):

- If in red, then restore convexity by popping at top.
- If in green, then restore convexity by popping at bottom.

Finally, push \(P_{n+1} \).
MELKMAN'S ALGORITHM

time: $\Theta(n)$: popping can be amortized (charged to deletion)

- Start w/ 3 points
- Store them in a DEQUE:
 - WLOG let 123 be \rightarrow
 - then: bottom of deque 3,1,2
 - top of deque 3,2,1

P_k