CONSTRUCTING DELAUNAY
in O(n log n)

In 1D the interval $(\)$ is empty iff when raised onto $y=x^2$ it's on the lower hull. (any convex function works)

BACK TO 2D (& 3D)
• The intersection of a paraboloid with any non-vertical plane is an ellipse.
• **THE INTERSECTION OF A PARABOLOID WITH ANY NON-VERTICAL PLANE IS AN ELLIPSE.**

• **intuition**: Any paraboloid is a limit of ellipsoid w/ one focal point at ∞

Intersection of plane with:
sphere \rightarrow circle
ellipsoid \rightarrow ellipse
paraboloid \rightarrow ellipse (or parabola if plane is vertical)

These intersections are exact, not just limits.
In fact the ellipse projects vertically to a circle...

If we use \(z = x^2 + y^2 \)

(see notes provided online)

So if you have points inside a horizontal circle \(C \) on \(z = 0 \)

and you lift them to \(z = x^2 + y^2 \)

they will be under the corresponding cutting plane \(P \)

that is defined by the lifting of \(C \) to an ellipse
In fact the ellipse projects vertically to a circle...

If we use \(z = x^2 + y^2 \)

(see notes provided online)

- So if you have points inside a circle \(C \) on \(z = 0 \) and you lift them to \(z = x^2 + y^2 \), they will be under the corresponding cutting plane \(P \) that is defined by the lifting of \(C \) to an ellipse.

- So if 3 points are on an empty circle \(C \) then there is no other point below \(P \) lifted \(g \cdot P^* \Rightarrow \) the 3 points are on the 3D convex hull

- Any face \(F \) of the convex hull: \(\downarrow \) empty circle \(\cup \) vertices of \(F \) on the circle.
CONCLUSION:
- Compute Convex Hull of Lifted Points.
- (for general position every face is a triangle)
- Project down & Get Delaunay Triangulation

3D Convex Hull is $O(n \log n)$

- Other $O(n \log n)$ Algorithms for Voronoi/Delaunay
 - Fortune's Sweep
 - Divide & Conquer
MEDIAL AXIS

~ VORONOI DIAGRAM OF A POLYGON
- **Segments**: Convex angle bisectors & any position equidistant to two edges

- **Vertices**: Points equidistant to >3 positions on boundary

 Let's assume = 3 for now
• **SEGMENTS**: Convex angle bisectors & any position equidistant to two edges

• **VERTICES**: Points equidistant to ≥3 positions on boundary

 Let's assume = 3 for now

• **PARABOLIC ARCS!**: Any position equidistant to an edge and a (reflex) vertex.

• **Computation**: O(n) for polygons

 → beyond scope of this class

→ think of collision avoidance
• Which points have infinite regions?
• Which have bounded regions?
Only C.H. point can have \(\infty \) cell

same argument:

- **ONLY C.H. POINTS HAVE CELLS.**
- **F.V.D. IS A TREE.**
\(\text{\textbullet} \) \(\text{\textbullet} \) is uniquely furthest
\(\text{\textbullet} \) \(\text{\textbullet} \) equally far
\(\text{\textbullet} \) at center of circle
\(\text{\textbullet} \) with \(\text{\textbullet} \) \(\text{\textbullet} \) on it
\(\text{\textbullet} \) and all other points INSIDE

(\text{SMALLEST ENCLOSING CIRCLE} \\
\text{Ohlogn})
OTHER METRICS

• RECALL THAT EUCLIDEAN VORONOI CELLS CAN BE "GROWN" BY EXPANDING CIRCLES

• WHAT ABOUT L_1? L_\infty? etc?!
 - how do we grow cells?

If see links (taxi cab geometry, "different metrics")