$x, y : \text{match} \iff f(x) = f(y)$

Claim: $\exists \infty \text{ matches}$

trivial if $f = \text{const.}$ → Assume not.
\[f(s) = f(t) = \frac{f(x) + f(y)}{2} \]

For any \(f(q) = (1-a)f(x) + af(y) \) \(\exists f(p) = f(q) \)

\(\exists \infty \) pairs w/ same value (pairwise)

Added restriction: I want a diametric match.

\(\langle \) pick one random pair. If \(\bullet \succ \bullet \) (H>L) then walk clockwise on both sides, keeping diameter.

Eventually from H>L we get H<L (at \(\delta = 180^\circ \))

So in between, there must be a position w/ H=L \(\square \)
Let \(f() \) be a continuous function on the surface of the sphere.
We know that \exists 2 points on equator w/ equal temperature (or pressure, or...)

\[\Rightarrow \text{ pick any equator or parallel, etc or any centrally symmetric closed curve} \]

\[\begin{align*}
\{ \text{On loop}(a, b) \} & : \exists \text{ a diametric match.} \\
\text{true for any loop}(a, b) & : \infty \text{ number}
\end{align*} \]

\[\Rightarrow \text{ facing us} \]

\[\Rightarrow \text{ hidden on far side} \]

Note: \bullet need not have same value
This set of matched points (*) cannot be maximal. Why?
Can find another loop(a,b) : contradiction

There must be a closed curve separating a,b s.t. every point on the curve is matched.

∞ number of points on sphere w/ equal temperature to polar opposite!

(there may be others, not on the curve)
Now look at our curve and find any 2 polar opposites: \(a', b' \). We know \(f(a') = f(b') \).

Suppose we have a 2nd continuous function. Then *walk* while remaining opposite. Eventually we switch positions so somewhere on the curve \(f(a') = f(b') \), we also have \(g(a') = g(b') \).

\(\triangle 2 \) polar opposite points w/ equal temp + pressure
6 blue below
We can do this for any K below, & wrap around 180°

Then just switch "below"\rightarrow"above" & complete 360°
Suppose we have 2 sets
Start with one halving line on blue.
Notice it has some wiggle room.
One side has more red points (+)

- Rotate (always ccw) and maintain blue split.
- Red points can enter and exit (+) ... in fact multiple times
 - However eventually (+) will be the complement of starting position.
 - but then (+) contains fewer red points:
 - we passed a position w/ red split
$R = 14$
$B = 8$

Ham sandwich cut
$R = 14$

$B = 8$

There is always a Ham sandwich cut passing through a red & blue point.
Not necessarily just by shifting any given cut.

But we can anchor & rotate on blue set, until we reach a red point.

Must happen because L & R will invert roles.
intersection of red & blue median levels

line through red & blue points that splits both point sets

not parallel
zones intersect