Minimizing distance to a set of \(n \) lines

- As mentioned, if we knew which cell we are in, its LP is \(O(n) \).

Thm: there always exists a pair of lines \(a, b \) s.t. \(\leq \frac{3}{4} \) of input lines intersect any quadrant.

This can be found in \(O(n) \) time.

In \(O(n) \) time we can find OPT on \(a \) & \(b \) & decide which quadrant contains global OPT. (median finding & gradient).

So we can assemble \(\frac{n}{4} \) lines into one constraint (new fake line): const. fraction removed: \(O(n) \) overall.

Duality & ham-sandwich.
Thm: there always exists a pair of lines a,b s.t. $\leq \frac{3}{4}$ of input lines intersect any quadrant.

Partition: steep vs shallow slopes (by median slope)

Identify median level of each group

$\$ Intersect at x.
Thm: there always exists a pair of lines a, b s.t. \(\leq \frac{3}{4} \) of input lines intersect any quadrant.

Partition: steep vs shallow slopes (by median slope)

Identify median level of each group

\(\Rightarrow \) Intersect at x.

Construct median overall slope, M.
Thm: there always exists a pair of lines a, b s.t. $\leq \frac{3}{4}$ of input lines intersect any quadrant.

Partition: steep vs shallow slopes (by median slope)

Identify median level of each group

Intersect at x.

Claim: M & V partition the n lines.

Construct median overall slope, M.

Then shift M to x.
Thm: there always exists a pair of lines a, b s.t. $\leq \frac{3}{4}$ of input lines intersect any quadrant.

Partition: steep vs shallow slopes (by median slope)

Identify median level of each group $\&$ Intersect at x.

Construct median overall slope, M

Then shift M to x.

Claim: M & V partition the n lines

$\frac{1}{2}$ blue lines cross V below x.

Also, shallower than M, so cross on left.

($\&$ v.v.: above x $\&$ right on M.)
Thm: there always exists a pair of lines a,b s.t. $\leq \frac{3}{4}$ of input lines intersect any quadrant.

Claim: M & V partition the n lines.

Partition: steep vs shallow slopes (by median slope)

Identify median level of each group

\Rightarrow Intersect at x.

Construct median overall slope, M

Then shift M to x.
In $\Theta(n^2)$ time we can construct all lines through pairs of points.

Use previous theorem to get Oja median in $O(n^2)$ time

(it works with weighted distances as well)

A more complicated $O(n\log^3 n)$ algorithm exists.