"ULTIMATE PLANAR C.H. ALGORITHM?"
KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

[Diagram of upper hull only]
"ULTIMATE PLANAR C.H. ALGORITHM?"
KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

divide-conquer-merge

Upper hull only
"ULTIMATE PLANAR C.H. ALGORITHM?"
KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

divide-conquer-merge
divide-merge-conquer!

Upper hull only
"ULTIMATE PLANAR C.H. ALGORITHM?"
KIRKPATRICK-SEIDEL

It's a divide & conquer algorithm

divide-merge-conquer

Upper hull only
Goal: Get $O(n \log h)$

- We can't sort anything
 - How do we split? Median $O(n)$

- We can also afford $O(n)$ to merge
 - I.e. to find a bridge
Finding a Bridge in Linear Time

Let the bridge have slope k^*

Suppose we guess slope k.

Sweep k

Guess $K < K^*$
\[\Rightarrow \text{sweep stops on blue} \]

Guess $K > K^*$
\[\Rightarrow \text{sweep stops on red} \]

\[\{ \text{Guess } K = K^* \] \Rightarrow \text{confirm bridge} \]

$O(n)$ time to guess & verify
- Arbitrarily pair up points
- Arbitrarily pair up points
- Find median slope
- Guess $K=\text{median}$
Case 1: $k > k^*$

Half of the pairs have slope $k' > k$, so $k' > k^*$
Case 1

$K > K^*$

\[K^* \]

Half of the pairs have slope $K' > K$, so $K' > K^*$

K^* can't sweep below b

@ can't be on bridge (it could be on C.H.)
Case 2:

\[K < K^* \]

Half of the pairs have slope \[K' < K \], so
\[K' < K^* \]

\[a_x < b_x \]}

\[K^* \] can't sweep below \(a \) and \(b \) can't be on bridge (it could be on C.H.)
THROW AWAY ONE POINT (a or b) FROM HALF THE PAIRS

Case 1:

\[K > K^* \]

Half of the pairs have slope \(K' > K \), so \(K' > K^* \)

\[\text{can't be on bridge (it could be on C.H.)} \]

Case 2:

\[K < K^* \]

Half of the pairs have slope \(K' < K \), so \(K' < K^* \)

\[\text{can't be on bridge (it could be on C.H.)} \]
If we guess wrong:

THROW AWAY
ONE POINT \((a \lor b)\)
FROM HALF THE PAIRS

Then arbitrarily pair remaining points & "guess" again

Time: \(c\cdot n\) for first wrong guess

\[c \cdot \frac{3n}{4}\] for second "" ""

\[c \cdot \frac{3}{4} \cdot \frac{3n}{4}\] for third.

etc

total: \(O(n)\)
"Prune & Search"

If you can throw out a constant fraction of your input whenever you fail, then you will still have a good algorithm.

\[T(n) = F(n) + T(\frac{n}{c}) \quad [c > 1] \]

\[O(\log n) \quad O(1) : \text{binary search} \quad [c = 2] \]

\[O(n) \quad O(n) : \text{finding a bridge} \quad [c = \frac{4}{3}] \]

\[O(n^k) \quad O(n^k) : \frac{n^k + \frac{n^k}{2^k} + \frac{n^k}{4^k} + \cdots + \frac{n^k}{2^{i_k}}}{2} \quad [c = 2] \]

\[O(2^n) \quad O(2^n) : 2^n + 2^{n-1} + 2^{n-2} + \cdots + 2 \quad [c = 2] \]
Example of linear-time bridge finding

- Unknown bridge
- Upper hull only
- Median separator
- X_{min}
- X_{max}
Find median slope
Test slope:
- too steep
- only left side is extremal
Because slope is too steep: discard left endpoints of steeper pairs.
Subset: \(\leq \frac{3}{4} \cdot \text{original} \)
Discard left endpoints of steeper pairs.
New subset \(\leq \frac{3}{4} \cdot \frac{3}{4} \cdot \text{original} \)
New random pairs and median slope
Too steep yet again
Discard...
This time:
Too shallow
Discard right endpoints of shallower pairs.
Find median slope. Extreme finds one point on each side. ➔ DONE
We know how to find a bridge in linear time.

Might as well throw out potential non-C.H. pts inside ... it's "free"
We know how to find a bridge in linear time.

Might as well throw out potential non-C.H. pts inside ... it's "free".

Of course we might not throw anything out.
We know how to find a bridge in linear time.

Solve 2 smaller problems with n half points each.

That still only gives us $O(n \log n)$. Do we have to find a bridge that "splits" the hull evenly?

If we at least find one new bridge on both sides then we get $O(\log h)$ depth.

If we don't find a bridge on one side, we must have thrown out $\frac{n}{2}$ pts.
Cost tree

Example

\[\text{c.n} \rightarrow \text{first bridge} \]

\[\text{c.n/2} \rightarrow 2 \text{ more bridges} \]

\[\text{c.n/4} \rightarrow \text{"only" 3 bridges} \]

Tree must have exactly \(h \) nodes

\[\text{c.n/4} \rightarrow \text{actually a good thing} \]
cost tree

\[\begin{align*}
&c \cdot n \\
&c \cdot \frac{n}{2} \\
&c \cdot \frac{n}{4} \\
&c \cdot \frac{n}{4} \\
&\times \\
&c \cdot \frac{n}{4} \\
\end{align*} \]

first bridge

2 more bridges

"only" 3 bridges

exactly \(h \) nodes

balanced case:

\[\begin{align*}
&c n \\
&c n \\
&c n \\
&c n \\
\end{align*} \]

\(\text{depth } O(\log h) \)

\(\text{work } O(n \log h) \)

\(h \) can be \(O(n) \)
cost tree

- first bridge
- 2 more bridges
- "only" 3 bridges
- exactly h nodes

unbalanced case

$O(\log n)$ depth

$O(n)$ work

if you keep getting "unbalanced" hull edges, you will run out of points quickly (i.e., it can't keep happening!)

in this case h cannot be $O(n)$! (unlike, say, quick-hull)
Cost tree

- First bridge: $C \cdot \frac{n}{2}$
- 2 more bridges: $C \cdot \frac{n}{4}$
- "Only" 3 bridges: $C \cdot \frac{n}{4}$

\[\text{Swap nodes: } A < C \cdot \frac{n}{4} \]

(\& recursively the same)
Every node ascends only. Weight per level: less than full tree case.
We get a full tree: depth $\log h$.
$O(n \cdot \log h)$.

See web notes for analysis (which isn't hard).
Decomposing into convex pieces

r reflex vertices
r rays (bisectors)
$r+1$ convex pieces

Best possible:
resolve 2 reflex vertices with 1 diagonal

$$\frac{r-1}{2} + 1$$ pieces
\[\leq r + 1 \quad \text{with arbitrary borders (rays)} \]
\[\geq \frac{r^2}{2} + 1 \quad \text{with diagonals} \]

In fact with diagonals we can always get \(\leq 2r + 1 \)

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal:
 - Remove it if convexity is preserved at its 2 endpoints
\[\leq r + 1 \quad \text{with arbitrary borders (rays)} \]
\[\geq \frac{r^2}{2} + 1 \quad \text{with diagonals} \]

In fact with diagonals we can always get \(\leq 2r + 1 \)

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal: remove it if convexity is preserved at its 2 endpoints
\[\leq r + 1 \quad \text{with arbitrary borders (rays)} \]
\[\geq \frac{r^2}{2} + 1 \quad \text{with diagonals} \]

In fact, with diagonals we can always get \(\leq 2r + 1 \)

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal: remove it if convexity is preserved at its 2 endpoints
\leq r+1 \quad \text{with arbitrary borders (rays)}
\geq \frac{r^2}{2} + 1 \quad \text{with diagonals}

In fact with diagonals we can always get \leq 2r+1

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal: remove it if convexity is preserved at its 2 endpoints
\[\leq r + 1 \quad \text{with arbitrary borders (rays)} \]
\[\geq \frac{r^2}{2} + 1 \quad \text{with diagonals} \]

In fact with diagonals we can always get \(\leq 2r + 1 \)

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal: remove it if convexity is preserved at its 2 endpoints
\[\leq r + 1 \quad \text{with arbitrary borders (rays)} \]
\[\geq \frac{r^2}{2} + 1 \quad \text{with diagonals} \]

In fact with diagonals we can always get \(\leq 2r + 1 \)

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal:
 - Remove it if convexity is preserved at its 2 endpoints
\[\leq r + 1 \quad \text{with arbitrary borders (rays)} \]
\[\geq \frac{r^2}{2} + 1 \quad \text{with diagonals} \]

In fact with diagonals we can always get \(\leq 2r + 1 \)

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal: remove it if convexity is preserved at its 2 endpoints
with arbitrary borders (rays)

$$\leq r+1$$

with diagonals

$$\geq \frac{r^2}{2}+1$$

In fact with diagonals we can always get \(\leq 2r+1 \)

- Start with any convex partition w/ diagonals
- Process diagonals incrementally
 - For every diagonal:
 - Remove it if convexity is preserved at its 2 endpoints
 * Any endpoint can only "complain" for \(\leq 2 \) diagonals
 * So we will remove all but \(\leq 2r \) diagonals
OPTIMALITY

- Find min number of convex pieces
 - with diagonals: \(O(r^2 n^2) \) \(O(r^2 n \log n) \) ? project
 - dynamic programming
 - without diagonals: \(O(n + r^3) \) (Chazelle)

- Find min number of guards for given polygon
 - need not use convex decomposition
 - will discuss at some point
How would you verify that some given guards suffice?

4 start by computing visibility polygon of one

How?
Visibility in a cone

Polygon: 🔄
enter on right, going

while angle goes
push edges on stack
\[e_1, e_2, e_3 \]

if this continues until \(e_k \) great.
Non-trivial case: somewhere angle backtracks.
Suppose "upward".

starts getting complicated.
Non-trivial case: somewhere angle backtracks.

\[\text{Suppose "upward"} \]

Ignore until path reappears at same angle.

\[e_1 \, e_2 \, e_3 \, e_m \]

[partial edge]
So far we can handle any upward backtrack.

Eventually the chain shows up again.

\[
\begin{array}{cccccccc}
e_1 & e_2 & w_1 & e_x & w_2 & e_y & e_{y+1} & w_3 & e_z \\
\end{array}
\]

\[
\text{implicit}
\]
So far we can handle any upward backtrack.

If downward backtrack...

Just start popping from stack
Why is e_Y not in stack?

→ it will get covered eventually

notice all edges in stack point

added a prime just to show it's $\neq 0$ e_Y
How can we continue?

1) Forward: push
2) Backtrack: pop
3) Invisible: ignore

\[e_1, e_2, w_1, e_x, w'_2 \]
How can we continue?

1) Forward: push
2) Backtrack: pop
3) Invisible: ignore

until emerge from window

\{ if you go inside you will create a new sub-window and you will backtrack out anyway \}
every step is local (perhaps via sequence of local pops)

all you need to check:
- am I covering an edge when backtracking?
- am I going through a window?
- Moving forward: easy
- Backtrack up: wait till you return, to move forward
- Backtrack down: pop while backtracking unless you're in your own pocket

\downarrow could resume forward motion
\downarrow could jump to "backtrack up" (Going directly from \bullet to \bullet would have been the same)