
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Fall 2022 Scribe: M. McPike

Lectures 1, 2, 3: Convex Hull Algorithms

1 Definitions

• Convex: S ⊆ R is convex if for any points p, q ∈ S the line segment between p and q
is contained in S.

– A line intersects a convex polygon at 0, 1, or 2 vertices.

• Convex Hull of S ⊆ R: CH(S) is the smallest convex set containing S.
Points guaranteed to be on CH(S): points with min/max x/y coordinate, point fur-
thest from centroid

• The boundary of a polygon is defined by vertices listed in counterclockwise order
(main text uses clockwise). Line segments connect consecutive vertices. Any two line
segments intersect either at a vertex or not at all.

• A polygon is non-simple if two nonconsecutive edges share a vertex, e.g. a bow-tie.
Otherwise, it is simple.

• A polygon is monotone with direction m if every line with slope −1
m

intersects P at 0,
1, or 2 points.

• A polygon is star-shaped if there exists a point z such that for any point p in the
polygon, the line segment between p and z lies in P. The collection of all such points
z is called the kernel.

• Left hand turn: < ABC is a left hand turn if C is in the left half plane bound by
the line through A and B. In other words, A,B,C appear in counterclockwise order
on the boundary of △ABC.

• L is a supporting line of polygon P if at least one point of P is on L and the interior
of P is entirely in one half plane defined by L

2 Test for convexity

Assume p0, p1, · · · , pn = p0 is a circularly linked lists that defines a polygon (in counterclock-
wise order). P is convex =⇒ every turn < pipi+1pi+2 is a left hand turn.

< pqr is a left hand turn ⇐⇒ the determinant below is positive:∣∣∣∣∣∣
xp yp 1
xq yq 1
xr yr 1

∣∣∣∣∣∣
3 Convex Hull Algorithms

3.1 Lower bound for convex hull algorithms

We have to look at every point in S to find CH(S), so Ω(n) is a lower bound. We can use
a reduction argument to find a tighter lower bound. We will describe a comparison based
sorting algorithm that uses a convex hull algorithm.

• Input: unsorted list x1, · · · , xn

• Output: sorted list

• For each xi, let pi = (xi, x
2
i ) be a point in S ⊂ R - Θ(n)

• Use a convex hull algorithm to find CH(S) - TCH(n)

1



• Find the point p in S with minimum x-coordinate - Θ(n)

• Read the points that define CH(S), starting with p.

• We described a sorting algorithm that takes Θ(n) + TCH .

• Lower bound for comparison based sorting is Ω(n log n), so this is also a lower bound
for convex hull.

3.2 Slow Convex Hull

• Page 3 of main text

• Steps

– For every pair (pi, pj) of distinct points in S, and for every pk ∈ S \ {pi, pj},sue
the “left hand turn test” to determine which side of line ←→pipj pk lies on.

– If every pk lies on the right side of ←→pipj, then add −−→pipj to the edge set of CH(S).

– Order the edges

• O(n3)

3.3 Jarvis March (Gift Wrapping)

3.3.1 Time

T (n) = O(nh) where h is the number of points that define CH(S). In the worst case, h = n.

3.3.2 Steps

• Identify a point p0 that is in CH(S), e.g. the point in S with minimum x-coordinate.

• To find the next point p1 in CH(S): For all q ∈ S, find the slope of ←→p0q. Let p1 be the
point with the smallest (most negative) such slope.

• In general, pi is the point such that < pi−1pir is a left hand turn for all r ∈ S.

• To find pi: Choose the first two points r1, r2 ∈ S \{p0, · · · , pi−1}. If < pi−1r1r2 is a left
hand turn, replace r2 with r3 and repeat with < pi−1r1r3. Else, replace r1 with r2 and
repeat with < pi−1r2r3.

3.4 Graham Scan (Incremental Algo)

• Page 6 of text

• We build the upper hull and lower hull separately. We incrementally add points to the
hulls left to right.

• Sort points in order of increasing x-coordinate: p1, · · · pn. Note that p1 and pn are both
in the convex hull. This takes O(n log(n)).

• To build the lower hull:

– Push p1 and p2 to a stack. If < p1p2p3 is a left hand turn, push p3. Else, pop p2
then push p3. Now we are at p4.

– When we get to pi: If the top two stack points and pi make a left hand turn, push
pi. Else, pop the stack then push pi.

– Stop after adding pn (the right most point) to the stack. Now the stack contains
the lower convex hull points in order.

• Each point pi gets pushed once and gets popped at most once. Building the convex
hull after pre-sorting is θ(n).

• Time: O(n log n) + θ(n) = O(n log n)

2



3.4.1 Divide and Conquer Algorithm

We recursively find the convex hull of S. First, we presort the points in S by x-coordinate,
which takes O(n log n). This makes it easier to ”bridge” two convex hulls.

Base case: Pair the points in S, e.g. the first two in sorted order, etc.

Inductive step: All points in S1 are to the left of all points in S2. We have CH(S1) and
CH(S2). To build CH(S1 ∪S2), we need to add two edges that bridge CH(S1) and CH(S2)
and we need to throw out some edges in CH(S1) and CH(S2). A bridge between CH(S1)
and CH(S2) is a line that supports both polygons. To build the lower bridge, we can use a
ladder (O(n)) or binary search (O(log n)).

Time Complexity: T (n) = 2T (n/2) + f(n) where f(n) is O(n) or O(log n) depending on
how we build the bridge. T (n) = Θ(n log n) or T (n) = Θ(n), respectively.

Note: This algorithm is continued in the next lecture notes and on page 8 of the ”User
Guide” co-authored by Diane.

3.4.2 Quick Hull

This algorithm is used a lot because it is Θ(n) in the best case. In the worst case, it is Θ(n2).
We iteratively find points in CH(S) as follows:

• Find the points pmin, pmax ∈ S with minimum and maximum x-coordinate. Add these
points to CH(S).

• Calculate the slope of the line through pmin, pmax

• Find the highest and lowest points in S relative to that slope (e.g. slide the line through
pmin, pmax up and down without changing its slope)

• Add the points rmin, rmax found above to CH(S)

• Iterate with the line through rmin, pmin and the line through rmin, pmax. Do the same
for rmax.

3


