Lectures 1, 2, 3: Convex Hull Algorithms

1 Definitions

- Convex: $S \subseteq \mathbb{R}$ is convex if for any points $p, q \in S$ the line segment between p and q is contained in S .
- A line intersects a convex polygon at 0,1 , or 2 vertices.
- Convex Hull of $S \subseteq \mathbb{R}$: $C H(S)$ is the smallest convex set containing S.

Points guaranteed to be on $C H(S)$: points with $\min / \max x / y$ coordinate, point furthest from centroid

- The boundary of a polygon is defined by vertices listed in counterclockwise order (main text uses clockwise). Line segments connect consecutive vertices. Any two line segments intersect either at a vertex or not at all.
- A polygon is non-simple if two nonconsecutive edges share a vertex, e.g. a bow-tie. Otherwise, it is simple.
- A polygon is monotone with direction m if every line with slope $\frac{-1}{m}$ intersects P at 0 , 1 , or 2 points.
- A polygon is star-shaped if there exists a point z such that for any point p in the polygon, the line segment between p and z lies in P . The collection of all such points z is called the kernel.
- Left hand turn: $<A B C$ is a left hand turn if C is in the left half plane bound by the line through A and B. In other words, A, B, C appear in counterclockwise order on the boundary of $\triangle A B C$.
- L is a supporting line of polygon P if at least one point of P is on L and the interior of P is entirely in one half plane defined by L

2 Test for convexity

Assume $p_{0}, p_{1}, \cdots, p_{n}=p_{0}$ is a circularly linked lists that defines a polygon (in counterclockwise order). P is convex \Longrightarrow every turn $<p_{i} p_{i+1} p_{i+2}$ is a left hand turn.
$<p q r$ is a left hand turn \Longleftrightarrow the determinant below is positive:
$\left|\begin{array}{lll}x_{p} & y_{p} & 1 \\ x_{q} & y_{q} & 1 \\ x_{r} & y_{r} & 1\end{array}\right|$

3 Convex Hull Algorithms

3.1 Lower bound for convex hull algorithms

We have to look at every point in S to find $C H(S)$, so $\Omega(n)$ is a lower bound. We can use a reduction argument to find a tighter lower bound. We will describe a comparison based sorting algorithm that uses a convex hull algorithm.

- Input: unsorted list x_{1}, \cdots, x_{n}
- Output: sorted list
- For each x_{i}, let $p_{i}=\left(x_{i}, x_{i}^{2}\right)$ be a point in $S \subset \mathbb{R}-\Theta(n)$
- Use a convex hull algorithm to find $C H(S)-T_{C H}(n)$
- Find the point p in S with minimum x -coordinate $-\Theta(n)$
- Read the points that define $C H(S)$, starting with p .
- We described a sorting algorithm that takes $\Theta(n)+T_{C H}$.
- Lower bound for comparison based sorting is $\Omega(n \log n)$, so this is also a lower bound for convex hull.

3.2 Slow Convex Hull

- Page 3 of main text
- Steps
- For every pair $\left(p_{i}, p_{j}\right)$ of distinct points in S, and for every $p_{k} \in S \backslash\left\{p_{i}, p_{j}\right\}$,sue the "left hand turn test" to determine which side of line $\overleftrightarrow{p_{i} p_{j}} p_{k}$ lies on.
- If every p_{k} lies on the right side of $\overleftrightarrow{p_{i} p_{j}}$, then add $\overrightarrow{p_{i} p_{j}}$ to the edge set of $C H(S)$.
- Order the edges
- $O\left(n^{3}\right)$

3.3 Jarvis March (Gift Wrapping)

3.3.1 Time

$T(n)=O(n h)$ where h is the number of points that define $C H(S)$. In the worst case, $h=n$.

3.3.2 Steps

- Identify a point p_{0} that is in $C H(S)$, e.g. the point in S with minimum x-coordinate.
- To find the next point p_{1} in $C H(S)$: For all $q \in S$, find the slope of $\overleftrightarrow{p_{0} q}$. Let p_{1} be the point with the smallest (most negative) such slope.
- In general, p_{i} is the point such that $<p_{i-1} p_{i} r$ is a left hand turn for all $r \in S$.
- To find p_{i} : Choose the first two points $r_{1}, r_{2} \in S \backslash\left\{p_{0}, \cdots, p_{i-1}\right\}$. If $<p_{i-1} r_{1} r_{2}$ is a left hand turn, replace r_{2} with r_{3} and repeat with $<p_{i-1} r_{1} r_{3}$. Else, replace r_{1} with r_{2} and repeat with $<p_{i-1} r_{2} r_{3}$.

3.4 Graham Scan (Incremental Algo)

- Page 6 of text
- We build the upper hull and lower hull separately. We incrementally add points to the hulls left to right.
- Sort points in order of increasing x-coordinate: $p_{1}, \cdots p_{n}$. Note that p_{1} and p_{n} are both in the convex hull. This takes $O(n \log (n))$.
- To build the lower hull:
- Push p_{1} and p_{2} to a stack. If $<p_{1} p_{2} p_{3}$ is a left hand turn, push p_{3}. Else, pop p_{2} then push p_{3}. Now we are at p_{4}.
- When we get to p_{i} : If the top two stack points and p_{i} make a left hand turn, push p_{i}. Else, pop the stack then push p_{i}.
- Stop after adding p_{n} (the right most point) to the stack. Now the stack contains the lower convex hull points in order.
- Each point p_{i} gets pushed once and gets popped at most once. Building the convex hull after pre-sorting is $\theta(n)$.
- Time: $O(n \log n)+\theta(n)=O(n \log n)$

3.4.1 Divide and Conquer Algorithm

We recursively find the convex hull of S. First, we presort the points in S by x-coordinate, which takes $O(n \log n)$. This makes it easier to "bridge" two convex hulls.
Base case: Pair the points in S, e.g. the first two in sorted order, etc.
Inductive step: All points in S_{1} are to the left of all points in S_{2}. We have $C H\left(S_{1}\right)$ and $C H\left(S_{2}\right)$. To build $C H\left(S_{1} \cup S_{2}\right)$, we need to add two edges that bridge $C H\left(S_{1}\right)$ and $C H\left(S_{2}\right)$ and we need to throw out some edges in $C H\left(S_{1}\right)$ and $C H\left(S_{2}\right)$. A bridge between $C H\left(S_{1}\right)$ and $C H\left(S_{2}\right)$ is a line that supports both polygons. To build the lower bridge, we can use a ladder $(O(n))$ or binary search $(O(\log n))$.
Time Complexity: $T(n)=2 T(n / 2)+f(n)$ where $f(n)$ is $O(n)$ or $O(\log n)$ depending on how we build the bridge. $T(n)=\Theta(n \log n)$ or $T(n)=\Theta(n)$, respectively.
Note: This algorithm is continued in the next lecture notes and on page 8 of the "User Guide" co-authored by Diane.

3.4.2 Quick Hull

This algorithm is used a lot because it is $\Theta(n)$ in the best case. In the worst case, it is $\Theta\left(n^{2}\right)$. We iteratively find points in $C H(S)$ as follows:

- Find the points $p_{\min }, p_{\max } \in S$ with minimum and maximum x-coordinate. Add these points to $C H(S)$.
- Calculate the slope of the line through $p_{\min }, p_{\max }$
- Find the highest and lowest points in S relative to that slope (e.g. slide the line through $p_{\text {min }}, p_{\text {max }}$ up and down without changing its slope)
- Add the points $r_{\text {min }}, r_{\text {max }}$ found above to $C H(S)$
- Iterate with the line through $r_{\text {min }}, p_{\min }$ and the line through $r_{\text {min }}, p_{\text {max }}$. Do the same for $r_{\text {max }}$.

