
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Fall 2022 Scribe: David Gentile

Dynamicized Convex Hulls Continued

1 Recap of Last Discussion

Last time, we briefly recapped some of the algorithms we had encountered,
including Jarvis’s March, Incremental Hull, and Divide & Conquer Hull. We
recalled the notion of an abstract data type, mentioning concatenable queues
and priority queues from CS160. We also discussed the so-called “quick
hull” algorithm, which is really only quick in a handful of circumstances and
generally runs in quadratic time.

2 What to Do with Unusual Hulls

So far, we have seen several deterministic algorithms for computing the com-
plex hull of an input set X in the plane, and we reduced the problem of
sorting a general list to that of finding a convex hull, thus showing that the
best time bound we can hope to achieve with our convex hull algorithms is
Ω(n log n). Let us now consider some edge cases that might prompt us tweak
the techniques we have developed to this point.

Consider the following example: suppose we have a data set where the
vast majority lies in one region of the plane, but a handful of extreme outliers
define the convex hull of the set and we find ourselves with a relatively simple
polygon for our convex hull.

We saw previously that Jarvis’s March ran inO(nh), where h = |CH(X)|.
For large n in this particular case, this would be quiet a bit faster than
our O(n log n) methods. That being said, in order to know to employ the
Jarvis March here, we would need to have pre-ordained knowledge about the
properties of the final hull, and that just isn’t a reasonable assumption to
make in general. This raises a question: can we integrate this case and find
a single algorithm that will perform quickly regardless of the complexity of
our final hull? It turns out the answer is yes.

1

Figure 1: A large set with a simple convex hull

2

3 Ultimate Convex Hull

3.1 Preamble

We now introduce the so-called Ultimate Convex Hull algorithm. We claim
that this algorithm runs inO(nlogh), meaning that it will in fact beat Jarvis’s
March handily even in the situation we outlined above. Furthermore, the
worse case scenario, where every point in X belongs to CH(X), we see that
we are still running in O(n log n) time!

UCH is known as a “prune & search” or “marriage before conquest”
algorithm. It also has the property being a dynamicizable algorithm, meaning
that if we can implement it in such a way thatwe can add or remove points
freely and quickly. UCH will build the original solution for the set X in
Θ(n log n) time and update in Θ(log2 n) time.

Before proceeding, we remark that this algorithm depends upon the ob-
servation that convex hull construction is an order-decomposable problem.
That means we can define some ordering function and merging function,
where the latter operates iteratively on the ordered input set.

3.2 The Algorithm, Undynamicized

UCH is based on the divide & conquer method we saw previously. The
problem with the divide & conquer method as it stands now is that the zig-
zagging operation to construct the ladder and find the bridge performs an
awful lot of unnecessary work in order to produce the two vertices needed
to merge the hulls. Our goal will be to find the bridge first (this is the
“marriage” aspect). The key idea is to focus on finding the median line
dividing the left hull and the right hull. If the points that define the bridge
have coordinates (xL, yL), (xR, yR), then we will want to delete all points
satisfying xl < x < xR. Now we proceed as follows: pair the points with
their neighbor in memory (i.e., arbitrarily), and compute the slopes of the
resulting lines. We compute the median slope M using the medianFind
algorithm from CS160, which we know to run in Θ(n). We will use this to
find the brdige in linear time. For each point p, consider the line lp,M which
passes through p with slope M . Sort these lines by their y-intercept. Look
at the point corresponding to the line with maximal y-intercept, and delete
all the pts on the lower bound of any line with slope less than M , since these
points cannot possibly belong to the bridge.

3

4

Now we consider time bounds. It’s clear that our bridge-finding routine
is O(n), since we have

Tbridge(n) ≤ Tbridge(n− ⌊n
4
⌋) +O(n)

We have now that our UCH algorithm satisfies

T (n, h) =

0, h = 1
O(n), h = 2
T (n

2
, hl) + T (n

2
, hr) + Tbridge(n), h ≥ 3

where hl + hr = h Let us show that T (n, h) ≤ cn log h.

Proof 3.1 We will proceed by induction on h. In the case h = 2, we have

T (n, 2) = c1n = c1n log(2)

Now suppose that we have shown the claim for h ≤ k for some k. Then we
have that

T (n, h) ≤ c1n+ T (
n

2
, hl) + T (

n

2
, hr)

≤ c1n+
cn

2
log hl +

cn

2
log hr

≤ c1n+
cn

2
[log hl + log hr]

≤ c1n+
cn

2
log hlhr

≤ c1n+
cn

2
log hl(h− hl)

≤ c1n+
cn

2
log

h

2

h

2

≤ c1n+
cn

2
log

h2

4

≤ c1n+ cn log
h

4
≤ c1n+ cn log h− 2cn

≤ cn log h

5

Now we turn our eye towards dynamicization of the algorithm. The key
problem is one of storage - recall that for performing merge sort on a list of
integers, we found we had data storage issues if we used arrays. In particular
we need to keep an entire extra copy of the array to actually do the merging
process. This can be improved significantly by using linked lists, so that
instead of manipulating copies of values, we can simply adjust pointers as
necessary. This will be our inspriation for the dynamic version of UCH. Next
time, we will see that by using a balanced binary search tree, in particular a
concatenable queue, we can efficiently keep track of our work in constructing
the hull so that points can be removed and added quickly.

6

