
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Fall 2022 Scribe: David Gentile

Dynamicized Convex Hulls Continued

1 Recap of Last Discussion

In the last lecture, we considered some edge cases of computing the convex
hull for a set of points where it would actually be beneficial if our running
time were asympototic to a function of the number of points in the hull - for
example, we considered the case where we have just a few extreme outliers,
where we have the vast majority of our dataset bounded by a quadrilateral
convex hull whose points lie sufficiently far from the rest of the data. In this
case, we saw that Jarvis’s March actually performs quiet well, since for large
n in this scenario, it’s totally possible that we have nh < n log n.

This prompted us to investiage the so-called Ultimate Convex Hull algo-
rithm, a method which computes for a set X the hull CH(X) in O(n log h),
which would be a significant improvement. This “prune & search” or “mar-
riage before conequest” algorithm presented a dynamicized method for com-
puting convex hulls, which runs on an inital input setX of size n inO(n log n)
time and updates in O(log2 n) time.

2 Aside: But What’s the Deal with Convex-

ity Anyways?

On the first day of class, we introduced several flavors of polygons — convex,
monotone, and star-shaped. Why do we take an interest in those particular
flavors? There are two main reasons, for us: point inclusion and intersection
detection. These problems come up in many applications of computational
geometry. For example, let’s consider VLSI design for a moment — chips are
made up of several layers of differing materials, and the places where different
materials overlap corresponds to the presence of a transistor. Geometrically,
the problem of designing a transistor then amounts to overlaying a sequence
of rectangles, and finding their overlap and the outline of their union.

1



Figure 1: finding the intersections and boundary of the union for a family of
rectangles

2



3 Back to Dynamic Convex Hull Algorithms

Suppose we are in the middle of merging a sequence of lower convex hulls
together to form the final lower hull of our input set. We need to be careful
wehn deleting points while merging the lower hulls if we want to be able to
dynamically add and remove points from the set — in other words, we need
to be keeping track of our previous work in the process of building up the
hull. Furthermore, it would be very unfortunate if we required O(n log n)
time for evry update. Recall now a data structure introduced in CS160 -
the augmented tree. There are essentially binary trees with a “pointer to
anything” associated with each node (cf. void* pointers in C), conceptually
a whiteboard to keep track of whatever information we need to keep track of.
In the case of keeping track of convex hull computations, we could have the
pointers direct us to another tree containing information about the process so
far. The top node will contain a pointer which directs to a tree that encodes
the actual convex hull of the set, while everything below the root will act as
a live history of our dynamic hull algorithm’s work. We now claim that with
this data structure we can run our dynamic hull algorithm as we had hoped
— that is, O(n log n) to create the inital hull and O(log2 n) to update it.

4 The 8 Cases

Suppose we are trying to merge two lower hulls. In order to proceed, we’ll
need to consider the 8 possible configurations of a candidate bridge between
two vertices and the ways we might eliminate (at least) half the points in
either (or both) of the lower hulls when the candidate bridge does not belong
to the merged hull. Note that these cases are discussed in [?]. To recap
our information before diving into the cases: we are looking at two lower
convex hulls, which we might label LCHL and LCHR. We know the me-
dian line l between the two hulls which divides them, so that LCHL lies
entirely to the left of L and LCHR lies entirely to the right of l, and the left
and right most vertices of both hulls. We also have enumerate the vertices
of the lower hulls. Let us denote them by V (LCHL) = {p1, . . . , pn} and
V (LCHR) = {q1, . . . , qm}. In the following cases, we will consider the angles
̸ pn/2−1pn/2pn/2+1 and ̸ qm/2−1qm/2qm/2+1, which we well now abbreviate to
L and R, respectively. We also denote the line connecting pn/2 and qm/2 by
λ. Illustrations of these cases can be found at the end of the notes, as well

3



as in the listed reference.

1. The first case is easiest. If λ falls below both angles then we have found
our bridge and are done.

2. In the second case, we have λ passing through L below pn/2+1 and above
pn/2−1. We see that λ cannot be the bridge, but we also know that we
can safely discard {pn/2, . . . , pn} going forward, since they cannot be
vertices of the bridge.

3. This case is symmetric to case 2, but we instead discard {q1, . . . , qm/2}.

4. In this case, things get a bit trickier. We see that λ passe through
both angles, meaning it is not immediately obvious what points we can
discard. For this and for the next two cases, let us now extend the line
segments pn/2pn/2+1 and qm/2−1qm/2 and label the point at which they
intersect by r. Now we observe that the median line, together with the
right most point of LCHL and the left most point of LCHR form a
“zone of exclusion”. For this case, let us assume that r lies to the left
of the exclusion zone. If this is the case, it’s clear that we can eliminate
{p1, . . . , pn/2} and continue.

5. Again by symmetry to the previous case, if the point r lies to the right
of the exclusion zone, then we can eliminate {qm/2, . . . , qm}.

6. Now suppose that r lies within the exclusion zone itself - this is a partic-
ularly nice case, because we see that we can eliminate {p1, . . . , pn/2, qm/2, . . . , qm}.

7. In the final two cases we consider the possibility that λ lies below one
angle and pass through another. If λ lies below L but passes through
R, we see that we can eliminate {pn/2, . . . , pn, qm/2, . . . , qm}.

8. By symmetry to the previous case, if λ lies below R but passes through
L, we can eliminate {p1, . . . , pn/2, . . . , q1, . . . , qm/2}.

We have now shown that our bridge finding process can be run in log time,
and we have used the fact that we can think of the problem of finding a bridge
as order decomposable. We presort the points with some ordering operation
ORD(n) and then perform a MERGE(n) operation which runs in O(log n).

4



Figure 2: Cases 1 through 5

5



Figure 3: Cases 6 through 8

6



5 Order-Decomposability Discussion

Order-decomposability will be a common theme throughout the course. Let’s
preview a few problems that we can use this viewpoint to solve.

5.1 Finding the Intersection of Half-planes

Suppose we have a family of half planes and we want to find the intersectin
of them and the boundary of that intersection. We also want to do this in a
dynamic way, i.e., we want to be able to freely add/delete lines to/from the
family. The solution to this problem will wind up being extremely similar
to the work above, although we will be leveraging the slopes of the lines to
order them instead.

5.2 Find the Dominating Set of a Set of Planar Points

Suppose we have a set of points X in the plane. Each point then, when taken
together with the origin, defines a unique rectangle. The dominating set of
X is defined to be the subset of points which is not interior to any of the
generated rectangles. How do we compute this set? Again, we will see that
the solution is very similar to the work above.

5.3 Finding the Top and Bottom of a Polyon

Suppose we have a simply polygon P , with vertices labeled {p1, . . . , pn}. How
can we find the vertices of maximal and minimal height in sub-linear time?
Consider plotting the height of each vertex as a function of its label/index.
Then by applying a variation on the above themes with ternary search we
can perpetually discard 2/3s of the points until we find the critical values.

References

[1] D. P. Dobkin and D. L. Souvaine, Computational Geometry – A User’s
Guide, Chapter 2 of Advances in Robotics 1: Algorithmic and Geomet-
ric Aspects of Robotics, J. T. Schwartz and C. K. Yap, eds., Lawrence
Erlbaum Associates, 1987, 43-93.

7



Figure 4: Finding the intersection of a family of half planes, and the domi-
nating set of a family of points in the plane

8



Figure 5: finding the points of maximum and minimum height for a given
polygon

9


