Convex Hull in Higher Dimensions

1 Introduction

This lecture describes a data structure for representing convex polytopes and a divide and conquer algorithm for computing convex hull in 3 dimensions. Let S be a set of n points in \Re^{3}. Convex hull of $S(C H(S))$ is the smallest convex polytope that contains all n points. Since the boundary of this polytope is planar, it can be efficiently represented by the data structure described in the next section (only true for 3D).

2 Data Structure

Doubly-Connected Edge List (DCEL) [1] is a data structure for representing polytopes in 3D (see Figure 1 for DCEL representation of tetrahedron). It consists of 3 lists, containing the following data:

1. Edge List

- Vertices: Source and Target
- Faces: Left and Right
- Edges: Next (with respect to left face) and Previous (with respect to right face)

2. Face List

- Normal vector
- One adjacent edge

3. Vertex List

- Coordinates
- One adjacent edge

Edge List

	Vertex			Face		Edge	
	S	T	L	R	Next	Prev	
e1	B	C	1	4	3	5	
e2	D	A	2	3	3	5	
e3	A	C	2	1	4	6	
e4	C	D	2	4	2	1	
e5	B	D	4	3	4	6	
e6	A	B	1	3	1	2	

Face List

	Normal			One
	x	y	z	Edge
f1				1
f2				4
f3				6
f 4				5

Figure 1: DCEL Representation of Tetrahedron

Figure 2: Incidence Graphs of Simplexes

DCEL groups primitive components of a polytope into sets according to their dimensionality and provides linkage between adjacent dimensions. Incidence graph is a similar data structure for representing polytopes. Incidence graph consists of $d+2$ partitions, corresponding to $-1 \leq k \leq d$ dimensions (5 partitions in 3D). Partitions -1 and d consist of a single element each, the "source" and the represented polytope respectively. Nodes of partition $k, 0 \leq k \leq d-1$ are the k-faces of the polytope: 0 -face is a vertex, 1 -face is an edge, 2-face is a face etc. (see examples in Figure 2) Edges of an incidence graph connect incident elements of adjacent dimensions, which makes it equivalent to DCEL (even though data stored by the two data structures explicitly is different).

Note that reversing the order of dimensions, which is equivalent to flipping an incidence graph upside down, gives a geometric dual of a polytope. Incidence graphs are good for visualising this operation. Each of the simplexes shown in Figure 2 has an equivalent geometric dual. A cube and its geometric dual, an octahedron, are shown in Figure 3, and cube's incidence graph is given in Figure 4.

Figure 3: Cube and its Geometric Dual

Figure 4: Cube Adjacency Lattice

3 Divide and Conquer Algorithm (Preparata and Hong)

Given a set of points S in \Re^{3}, presort them with respect to x_{1}-coordinate and let P represent the resulting order. Call ConvexHull (P, n) given below.

```
Algorithm 1 ConvexHull \((P, n)\)
    if \(\mathrm{n} \leq 7\) then
        Compute \(C H(P)\) by brute force
    else
        DIVIDE:
\[
\begin{aligned}
& k=\lfloor n / 2\rfloor \\
& P_{1}=\left\{p_{1}, p_{2} \ldots p_{k}\right\} \\
& P_{2}=\left\{p_{k+1}, p_{k+2} \ldots p_{n}\right\}
\end{aligned}
\]
```

RECUR:

$$
\text { ConvexHull }\left(P_{1}, k\right)
$$

$$
\text { ConvexHull }\left(P_{2}, n-k\right)
$$

MERGE:

$$
C H(P)=\operatorname{Merge}\left(C H\left(P_{1}\right), C H\left(P_{2}\right)\right)
$$

To illustrate the algorithm, suppose P_{1} is a tetrahedron and P_{2} is a cube as shown in Figure 5.

Note: There exists a hyperplane H_{0} orthogonal to x_{1}-axis such that H_{0} separates P_{1} and P_{2}. H_{0} intersects $\mathrm{CH}(\mathrm{P})$ in a 2 D convex polygon (see Figure 6). Each facet and edge of $C H(P)$, which is not a facet or edge of P_{1} or P_{2} must intersect H_{0}. These facets define a "sleeve".

Assuming that all facets are triangles, the following facets of $P_{1}\left(P_{2}\right)$ should be removed:

1. Any facet F of P_{1}, for which there is a vertex q of P_{2} such that q is on the "wrong" side of the plane containing F. Call such a facet "red".
2. Any edge e of P_{1}, which is contained only in red facets unless e is a border edge. Call these edges "red".
3. Any vertex v of P_{1}, which is only incident to red edges unless v is part of the border.

Figure 5: Merging a Tetrahedron and a Cube

Figure 6: Intersection of H_{0} and $\mathrm{CH}(\mathrm{P})$

Figure 7: Projection of a Sleeve Edge

Claim 3.1 The red facets and edges of P_{1} form a connected component (proof by induction on a dual graph).

Claim 3.2 One red facet of P_{1} can be found in $O\left(\left|P_{1}\right|\right)$ time as follows. Take vertex v of P_{1} with maximum x_{1}-coordinate and some vertex w of P_{2}. Find a facet of P_{1} that contains v and for which w is beyond.

Claim 3.3 If the border of the sleeve is known, all red facets of P_{1} can be found in $O\left(\left|P_{1}\right|\right)$ time. Find one red facet as described above and perform depth-first search, backtracking at border edges.

Determining the Sleeve

1. Orthogonally project P_{1} and P_{2} onto $x_{1}-x_{2}$ plane X. Produce convex polygons Q_{1} and Q_{2} separated by $X \cap H=l$.
2. Find bridge over l. This bridge is the projection of a "new" edge of the sleeve. Call this sleeve edge $\left(p_{\text {init }}, q_{\text {init }}\right)$. (see Figure 7)
3. Assume $e=(p, q)$ is a non-bridge edge of the sleeve. We want to find the "new" sleeve facet that contains e.
4. Let $C C W(p)=\left\{p_{0}, p_{1} \ldots p_{\lambda}\right\}$ be vertices of P_{1} adjacent to p in CCW order.
Let $C W(q)=\left\{q_{0}, q_{1} \ldots q_{\rho}\right\}$ be vertices of P_{2} adjacent to q in CW order.
5. Suppose $p_{t} \in C C W(p)$ and $q_{t} \in C W(q)$.
6. Search $C C W(p)$ starting at p_{t} for the first p_{i}, such that the hyperplane H_{1} spanned by p, q, and p_{i} keeps p_{i-1} and p_{i+1} on the same side.
Search $C W(q)$ starting at q_{t} for the first q_{j}, such that the hyperplane H_{2} spanned by p, q, and q_{j} keeps q_{j-1} and q_{j+1} on the same side.
H_{1} is tangent to P_{1} at $\overline{p p_{i}}$.
H_{2} is tangent to P_{2} at $\overline{q q_{j}}$.
7. Select either H_{1} or H_{2} as follows:
(a) Pick H_{1} iff q_{j} is on the same side of H_{1} as p_{i}.
(b) Pick H_{2} iff p_{i} is on the same side of H_{2} as q_{j}.
(c) Assume we selected H_{1}, then

- $\left\{p, q, p_{i}\right\}$ spans a facet of the sleeve
- $\left\{p, p_{i}\right\}$ is a border edge
- $\left\{p_{i}, q\right\}$ is a "new" (non-border) edge of the sleeve.
(d) Gift-wrap over this new edge.
(e) In $C C W(p)$ start search at p_{i}.
(f) In $C W(q)$ start search at q_{j}.

8. Repeat steps $3-8$ until $\left(p_{\text {init }}, q_{\text {init }}\right)$ is reached.

Claim 3.4 For every vertex $p(q)$ of the sleeve, $C C W(p)$ and $C W(q)$ is traversed in total at most once. Therefore, time necessary to find sleeve is $O\left(\sum \operatorname{deg}(p)+\sum \operatorname{deg}(q)\right)=O\left(\left|P_{1}\right|+\left|P_{2}\right|\right)$. Hence, merge takes linear time.

Steps 1 and 2 (projection and finding a bridge in 2D) take linear and $\log \left(\left|P_{1}\right|+\left|P_{2}\right|\right)$ time respectively. The two searches in Step 6 take linear time because each vertex p and q (in $C C W(p)$ and $C W(q)$ respectively) is

Figure 8: The Sleeve
traversed in total at most once: $O\left(\sum_{p} \operatorname{deg}(p)+\sum_{q} \operatorname{deg}(q)\right)=O\left(\left|P_{1}\right|+\left|P_{2}\right|\right)$. Since all interior (red) facets can be removed in linear time as described above (Claims 3.1-3.3), the whole merge takes linear time. Hence, the recurrence equation for the time complexity of the ConvexHull algorithm is $T(n)=$ $2 T(n / 2)+n$. Therefore, the running time of the divide and conquer algorithm for convex hull in 3 dimensions is $O(n \log n)$.

References

[1] D.E. Muller and F.P.Preparata, Finding the intersection of two convex polyhedra, Theoretical Computer Science 7:217-236, 1978.
[2] F.P. Preparata and S.J. Hong, Convex Hulls of finite sets of points in two and three dimensions, Communications of the ACM, 20:87-93, 1977.

