
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Spring 2005 Scribe: Mikhail Urinson

Convex Hull in Higher Dimensions

1 Introduction

This lecture describes a data structure for representing convex polytopes and
a divide and conquer algorithm for computing convex hull in 3 dimensions.
Let S be a set of n points in �3. Convex hull of S (CH(S)) is the small-
est convex polytope that contains all n points. Since the boundary of this
polytope is planar, it can be efficiently represented by the data structure
described in the next section (only true for 3D).

2 Data Structure

Doubly-Connected Edge List (DCEL) [1] is a data structure for representing
polytopes in 3D (see Figure 1 for DCEL representation of tetrahedron). It
consists of 3 lists, containing the following data:

1. Edge List

• Vertices: Source and Target

• Faces: Left and Right

• Edges: Next (with respect to left face) and Previous (with respect
to right face)

2. Face List

• Normal vector

• One adjacent edge

3. Vertex List

• Coordinates

• One adjacent edge

1

A

B

C

D

1
e

2
e

3
e

4
e

5
e

6
e

1
f 2

f

3
f

4
f

back

bottom
Edge List

Vertex Face Edge

S T L R Next Prev

e1 B C 1 4 3 5

e2 D A 2 3 3 5

e3 A C 2 1 4 6

e4 C D 2 4 2 1

e5 B D 4 3 4 6

e6 A B 1 3 1 2

Face List

Normal One

x y z Edge

f1 1

f2 4

f3 6

f4 5

Vertex List

One

x y z Edge

A 2

B 1

C 3

D 2

Figure 1: DCEL Representation of Tetrahedron

2

-1

0

1

2

3

Dim Line Segment Triangle Tetrahedron

S S S

A A AB B BC C D

AB AC
AC

ABC
ABC ABD ACD BCD

ABCD

AB AB CDBDADBC
BC

Figure 2: Incidence Graphs of Simplexes

DCEL groups primitive components of a polytope into sets according to
their dimensionality and provides linkage between adjacent dimensions. Inci-
dence graph is a similar data structure for representing polytopes. Incidence
graph consists of d + 2 partitions, corresponding to −1 ≤ k ≤ d dimensions
(5 partitions in 3D). Partitions −1 and d consist of a single element each,
the ”source” and the represented polytope respectively. Nodes of partition
k, 0 ≤ k ≤ d − 1 are the k-faces of the polytope: 0-face is a vertex, 1-face
is an edge, 2-face is a face etc. (see examples in Figure 2) Edges of an inci-
dence graph connect incident elements of adjacent dimensions, which makes
it equivalent to DCEL (even though data stored by the two data structures
explicitly is different).

Note that reversing the order of dimensions, which is equivalent to flip-
ping an incidence graph upside down, gives a geometric dual of a polytope.
Incidence graphs are good for visualising this operation. Each of the sim-
plexes shown in Figure 2 has an equivalent geometric dual. A cube and its
geometric dual, an octahedron, are shown in Figure 3, and cube’s incidence
graph is given in Figure 4.

3

A B

CD

E F
GH

Figure 3: Cube and its Geometric Dual

-1

0

1

2

3 Cube

S

A EB FC GD H

BC

ABCD EFGHABFE BCGF CDHG ADHE

AB
AD

AE

BF

CG DH EF FG
GH EHCD

Figure 4: Cube Adjacency Lattice

4

3 Divide and Conquer Algorithm (Preparata

and Hong)

Given a set of points S in �3, presort them with respect to x1-coordinate
and let P represent the resulting order. Call ConvexHull(P, n) given below.

Algorithm 1 ConvexHull(P, n)

if n ≤ 7 then
Compute CH(P) by brute force

else
DIVIDE:

k = �n/2�
P1 = {p1, p2...pk}
P2 = {pk+1, pk+2...pn}

RECUR:
ConvexHull(P1, k)
ConvexHull(P2, n − k)

MERGE:
CH(P) = Merge(CH(P1), CH(P2))

To illustrate the algorithm, suppose P1 is a tetrahedron and P2 is a cube
as shown in Figure 5.

Note: There exists a hyperplane H0 orthogonal to x1-axis such that H0

separates P1 and P2. H0 intersects CH(P) in a 2D convex polygon (see Figure
6). Each facet and edge of CH(P), which is not a facet or edge of P1 or P2

must intersect H0. These facets define a ”sleeve”.
Assuming that all facets are triangles, the following facets of P1(P2)

should be removed:

1. Any facet F of P1, for which there is a vertex q of P2 such that q is on
the ”wrong” side of the plane containing F . Call such a facet ”red”.

2. Any edge e of P1, which is contained only in red facets unless e is a
border edge. Call these edges ”red”.

3. Any vertex v of P1, which is only incident to red edges unless v is part
of the border.

5

Figure 5: Merging a Tetrahedron and a Cube

Figure 6: Intersection of H0 and CH(P)

6

Figure 7: Projection of a Sleeve Edge

Claim 3.1 The red facets and edges of P1 form a connected component (proof
by induction on a dual graph).

Claim 3.2 One red facet of P1 can be found in O(|P1|) time as follows. Take
vertex v of P1 with maximum x1-coordinate and some vertex w of P2. Find
a facet of P1 that contains v and for which w is beyond.

Claim 3.3 If the border of the sleeve is known, all red facets of P1 can be
found in O(|P1|) time. Find one red facet as described above and perform
depth-first search, backtracking at border edges.

Determining the Sleeve

1. Orthogonally project P1 and P2 onto x1-x2 plane X. Produce convex
polygons Q1 and Q2 separated by X ∩ H = l.

2. Find bridge over l. This bridge is the projection of a ”new” edge of the
sleeve. Call this sleeve edge (pinit, qinit). (see Figure 7)

7

3. Assume e = (p, q) is a non-bridge edge of the sleeve. We want to find
the ”new” sleeve facet that contains e.

4. Let CCW (p) = {p0, p1...pλ} be vertices of P1 adjacent to p in CCW
order.
Let CW (q) = {q0, q1...qρ} be vertices of P2 adjacent to q in CW order.

5. Suppose pt ∈ CCW (p) and qt ∈ CW (q).

6. Search CCW (p) starting at pt for the first pi, such that the hyperplane
H1 spanned by p, q, and pi keeps pi−1 and pi+1 on the same side.
Search CW (q) starting at qt for the first qj , such that the hyperplane
H2 spanned by p, q, and qj keeps qj−1 and qj+1 on the same side.
H1 is tangent to P1 at ppi.
H2 is tangent to P2 at qqj.

7. Select either H1 or H2 as follows:

(a) Pick H1 iff qj is on the same side of H1 as pi.

(b) Pick H2 iff pi is on the same side of H2 as qj.

(c) Assume we selected H1, then

• {p, q, pi} spans a facet of the sleeve

• {p, pi} is a border edge

• {pi, q} is a ”new” (non-border) edge of the sleeve.

(d) Gift-wrap over this new edge.

(e) In CCW (p) start search at pi.

(f) In CW (q) start search at qj.

8. Repeat steps 3 - 8 until (pinit, qinit) is reached.

Claim 3.4 For every vertex p (q) of the sleeve, CCW (p) and CW (q) is
traversed in total at most once. Therefore, time necessary to find sleeve is
O(

∑
deg(p) +

∑
deg(q)) = O(|P1| + |P2|). Hence, merge takes linear time.

Steps 1 and 2 (projection and finding a bridge in 2D) take linear and
log(|P1| + |P2|) time respectively. The two searches in Step 6 take linear
time because each vertex p and q (in CCW (p) and CW (q) respectively) is

8

Figure 8: The Sleeve

traversed in total at most once: O(
∑

p deg(p) +
∑

q deg(q)) = O(|P1|+ |P2|).
Since all interior (red) facets can be removed in linear time as described above
(Claims 3.1-3.3), the whole merge takes linear time. Hence, the recurrence
equation for the time complexity of the ConvexHull algorithm is T (n) =
2T (n/2)+n. Therefore, the running time of the divide and conquer algorithm
for convex hull in 3 dimensions is O(n logn).

References

[1] D.E. Muller and F.P.Preparata, Finding the intersection of two convex
polyhedra, Theoretical Computer Science 7:217-236, 1978.

[2] F.P. Preparata and S.J. Hong, Convex Hulls of finite sets of points in two
and three dimensions, Communications of the ACM, 20:87-93, 1977.

9

