Point Location: Edelsbrunner’s Algorithm*

Scribe : Gabriel Wachman
Spring, 2004

1 Introduction

In this lecture, we present Edelsbrunner’s algorithm for planar point loca-
tion. Point location is in 2-d is defined as follows: Given a graph (or map)
and a query point q, locate the region that contains q. This problem is
fundamental to many other problems in computational geometry. Any time
we need to answer the question "Where am 7”7, we have a point location
problem. Edelsbrunner’s algorithm constructs ”chains” from a given planar
graph. These chains are rooted at two artificially inserted points, one at neg-
ative infinity and the other at positive infinity. The chains themselves are sets
of connected line segments with an above/below relationship, that allow us
to perform a binary search to determine the two chains that bound our query
point. Kirkpatrick’s algorithm takes a different approach and computes an
incremental triangulation of the graph, first by completely triangulating the
graph, then removing independent sets until there is only one triangle left.
We can make use of the information stored in this incremental triangulation
to find our point in logarithmic time.

2 Edelsbrunner (1986)

For the Edelsbrunner Algorithm, we assumet that we are starting with a
planar graph. The preprocessing portion of Edelsbrunner requires that we
first construct the dual of the graph. This is done by converting every face

*These notes are partially based on notes scribed by Ning Wu in 2002

COMPUTATIONAL GEOMETRY LECTURE NOTES i

Figure 1: Example of chains for a given planar graph

to a vertex, and drawing an edge between any vertices that were adjacent
faces in the original graph. Then, construct a set of ”separator chains” on
the dual such that each separting chain C'v separates a given region from
all those regions less than it. Here, less than/greater than is determined by
a region’s ordering in the Y direction. See Figure 1, which shows a planar
graph that has been appropriately divided using chains. This preprocessing
step can be accomplished using a Topological Sort, in O(n?) time and space.
A good data structure for storing the graph would be a DCEL, as this would
easily allow us to ”walk around” the regions of the graph to construct our
chains. The chains themselves can simply be linked lists of vertex indices in
the DCEL.

Note that the separating chains of the dual need not be disjoint. In fact,
it is more likely that they are not disjoint. It is possible that there are n — 1
separator chains of length Q(n) in a graph with n regions. See Figure 2.
Hence, the number of chains is O(n?).

Our algorithm uses the constructed separating chains, and performs a
binary search on the chains to locate the region in which our query point
falls. This takes O(logn) per chain xO(logn) chains for a total of O(log® n).
The space complexity is O(n?) if we store each vertex and edge of each
chain separately, but remember that they are not disjoint, so in fact we
can reduce our space complexity to O(n) by storing each edge and vertex
exactly once. The following algorithm uses O(n) space complexity. Note
that in the following algorithm, the separating chain s; is above the regions
Ry, Ry, ,,, R; 1 (See figure 1 for visual). We denote above(e) to be the region

COMPUTATIONAL GEOMETRY LECTURE NOTES il

R(n-1)

XKD

RO

Figure 2: Planar subdivision with n regions and n — 1 separator chains of
length Q(n) [3]

above the edge on vertex e. Then we know if i = index(below(e)) and
j = index(above(e)), then separators containing e will be s;41, Si12,,,,, 5;.
The algorithm for location of a point P uses two levels of binary search.
The inner loop takes a separator s; and determines by binary search an edge
e of s; whose x-projection contains the abscissa P, of P.
The outerloop performs binary search on i, in order to locate P between
two consecutive separators s; ands;,; (i. e in a region R;).

2.1 Algorithm 1[3]

l.set i< 0,5« n—1, k<« lca(0,n — 1).
2. while 7 < j do
/* p is above s; and below s;11. so P is in one
of the regions R;, Riy1,,,,,, R;. */
3. ifi <k < j then
4. find by binary search an edge e in s; s. t
P, eprojection of e.
let a < index(above(e));
b « index(below(e)).
by testing P against e, we conclude it is either
5. if P is on e, set [oc < e;terminate.
6. if P is above e, set © < a;
else set j < b.

COMPUTATIONAL GEOMETRY LECTURE NOTES iv

7. else
8. if k > j set k < leftchild(k),
elseif k < i set k < rightchild(k).
9. set loc < R;;terminate.

2.2 Analysis

Binary search along any separator can be performed inO(logn) time since the
edges are stored in a linear array sorted from left to right. At each iteration,
k descends one level, so no of iterations= O(logn). So complexity of the
algorithm = O(log?m).

Space: Remember earlier we stated that it is possible to use only O(n)
space to store the chains. This is accomplished in step 6 of the algorithm
above. We can mark an edge when we first use it so that it is removed from
any subsequent chains that contain it. Look at Figure 1 again, and observe
that when more than one chain share an edge, we really only need to look
at that edge once in our binary search. If edge e is shared by chains ¢ and
j, then if the point falls in the x-region of e, it is above both ¢ and j in that
region - there is no need to check both chains. The general rule, is that in
a binary search ordering of the chains, an edge is stored with the chain at
the lowest level (root = level 0) in the binary search tree. In other words,
an edge e that belongs to chains s, ...s; need only be stored with the least
common ancestor (lca) of i and j. When an edge is not stored with a chain,
this represents a gap in the chain. The term ”gap” will be used later on, and
originates from our choice of linear storage.

Time: The algorithm above runs in O(log®n). We can improve this to
O(logn) as follows:

When we compare a point P against a chain C%, we find the edge in C}
whose x-region contains P. In other words, we find an x-region that contains
P. We can represent all such x-regions of C}, as a list Ly.

Note that an element ¢ of L exactly overlaps edge i of C, and overlaps
at most 2 edges or gaps (remember our linear storage) in each of Chright_child(k)
and Clefs_chitd(k), and hence overlaps at most 2 intervals of Licss_chitak), and
at most 2 intervals or gaps of Lyigns_chitd(k)-

Before we go into the details f the algorithm, it is important to under-
stand that what we are doing here is trying to avoid having to perform a
binary search on each chain in order to find the edge whose x-region con-
tains our query point. By using the information in the above paragraphs, we

COMPUTATIONAL GEOMETRY LECTURE NOTES A\

can construct a data structure that will allow us to avoid havine to repeat
this computation, and will ultimately save us a factor of O(logn) in time
complexity.

Lists Ly, ..., L, and their connections (see definition) are represented by
a linked data structure called the layered dag.

Definition 2.2.1 A layered dag is a directed acyclic graph whose nodes
correspond to tests of three kinds: x-tests, edge tests and gap tests. FEach
z-value of Ly (the z-values of the vertices of chain Cy) generates an x-test
and each interval between successive z-values (the edges, or gaps, since we
are not storing edges twice) generates an edge or gap test. An z-test node t
contains the corresponding z-value of Ly, denoted by xval(t) and two point-
ers left(t) and right(t) to the adjacent edge or gap nodes of L. An edge
or gap test node t contains two links down(t) and up(t) to appropriate nodes
of Ly and Lyxy. The layered dag contains a distinguished node root where
the point location search begins. This node is the root of a balanced tree of x-
tests whose leaves are the edge tests corresponding to the list for the root node.

2.3 Algorithm 2[3]

1. set 2 <=0, j <~ n — 1, t < root of the layered dag.
2. while 7 < j do:
3. if t is an edge test then let e <— edge(t) and do:
4. if P is on e, set loc < e and terminate.
5. if P is above e,
set t < up(t) and
i < index(above(e))
else
set t «— down(t) and
J « index(below(e)).
6. else t is an x-test then do:
7. if P, < zval(t) then
t « left(t)
else t < right(t).
8. else t is a gap test do:
9. if j < chain(t) then t < down(t) else t < up(t).
10. set loc <+ R; and terminate the search.

COMPUTATIONAL GEOMETRY LECTURE NOTES vi

Now we have to show storage requirement is still O(n). To prove, we
show that the total number of x-values in the lists Lq,..., L,[is at most 4n.

Theorem 2.3.1 Space requirement for Algorithm 2 is linear.

Proof 2.3.2 If a(k) denotes the number of edges in Cy, then Y cpar = n,
since each edge of the subdivision occurs in exactly one chain Cy. Let by
denote the number of z-values in Ly, and Ag(resp.By) denote the sum of
a;(resp.b;) over all nodes i in the subtree rooted at k. We will show that
B, < 4a, = 4m where r = lca(0,n — 1). Proof is by induction on height.
B, +b; < 4A; fori=1(k) ori=r(k) which is trivially true for leaves of T.
We know By = By + By + b and by, < 2ag + (byk) + brxy)/2 since each
edge in Cy contributes at most 2 z-values to Ly.

by, + By, Br(k) + Bl(k) + by, + by,

Byky + Biky + 2(2ax + (byry + 0 +1(k))/2)
B, ky + Byky + 4ag + by + by

4A, ¢y + 4Ak) + 4ay,

4Ag.

VANVANRVANRVAN

Computation of lca(least common ancestor):
We have the following formula for computing the least common ancestor
of i and j:
lea(i, j) = j A —(msb(i @ j) — 1) (1)
where msb(k) = lea(0, k).
msb(k) fork =1,2,...,n—1 can be computed in O(n) time and stored in
a table with n — 1 entries. There is another way of computing lca which uses

bit-reversal function rev(k) that reverses the order of bits in binary expansion
of k. Solca(i,j) =rev(k @ (k— 1)) A j where k =rev(i @ j).

References

[1] H. Edelsbrunner, L.J. Guibas and J. Stolfi, Optimal point location in a
monotone subdivision,SIAM J.Compute.,15,1986,pp.317-40.

COMPUTATIONAL GEOMETRY LECTURE NOTES

Vil

[2] H. Edelsbrunner, L.J. Guibas, Topologically Sweeping an Arrangement,

Proc. 18th ACM STOC,1986.

[3] Dobkin and Souvaine, ”Computational Geometry - A User’s Guide”

