Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Spring 2004 Original Scribe: Chung Peng
Current Scribe: Douglas Stetson

Linear Programming in 2D

1 Linear Programming in Multiple Dimen-
sions

Linear programming is an algorithm for maximizing the value of some equa-
tion subject to a set of constraints. The constraints are assumed to be a set
of linear equations in d dimensions. Linear programming in multiple dimen-
sions is solved through a recursive process of solving the sub-problem in the
lower next dimension. Problems in all dimensions decompose in this manner
until the base case is reached - the problem broken down into 2D. So these
notes will focus on the 2D case.

For example, to solve a linear programming problem in 4D, one would
solve the sub-problem of it in 3D, and to solve it in 3D, one needs to first
solve it in 2D.

2 Linear Programming in 2D
A problem in 2D has the following general format:
MiNg, 3, C1T1 + C2T2

D 01 T1 + Q0T > B;

where i = 1,..., n constraints, and > denotes the set of constraints. This
is converted by a transformation of the axis into the following more easily
manipulated form. We transfer from the x;,z, axis to the x,y axis, where
the x axis is parallel to ¢z + core = 0. This changes the constraints to:

Sy > a;x+ b, wherer € I

y < oz + b, where i € I

a<z<b

where y = ;171 + o 272. I; is the set of lines from which the lower hull of
the feasible region is formed, I, is the set for the upper hull. In Figure 1,
I, would be the set of lines which are at least partially dotted, I, would be
the set of lines which are at least partially dashed, and the feasible region is
would be the central polygon. The feasible region is the set of points that
satisfy the constrains, and could be the minimum solution. We will also talk
about feasible value of x, which is simply a value of x for which there is some
value of y such that the point (x,y) is in the feasible region.

Sample problem: find min,, 5, : 5x1 — 29
33z, +5xy>1
—4x; +5x9 > 5
—211 — 519 > 2

The number of constraints in the sets I; and I, are as follows:
[+ |Iof <

\I1| + |I2| + |[number of vertical lines| =n

2.1 g(x) and h(x)
g(x) is defined as the maximum of the constraints in set ;. Likewise, h(x)
is defined as the minimum of the constraints in set 1.

g9(z) = maz{o;z; + b;li € I}

h(z) = min{o,x; + bi|i € I}
Both of the above functions are piece-wise linear. The constraints can now
be simplified to as follows:

3 g(z) < h(z)
a<zx<b
These functions are shown graphically in figure 1. The dashed line is the
function g(x), the dotted line is the function h(x). On the left side, they
meet where x=a, on the right where x=b. This picture is of course only one

possible image, there is no guarantee the lines ever meet, or the a and b are
finite.

Figure 1: Sample constraints

2.2 Feasible and infeasible

As explained above, the feasible region is the set of all points that meet the
constraints. If we can find the feasible region, then finding the point that
minimizes (or maximizes) the solution is relatively easy. The following are
some facts about feasibility which we will rely on in the following sections.
We seek to find x*, the optimal (we’ll assume minimal) solution. We denote
x' as the value of x that is under consideration:

1. A given value z’ of z, a < ' < b is feasible iff g(z') < h(z').

2. If 2’ is NOT feasible, any feasible values must lie to one side of z’. Since
the feasible region is convex, and feasible values of x are bounded by
a and b (where either or both can be infinite), a point z’' outside the
region must be either to the right or left of the region.

3. If 2’ is feasible, we will test whether z’ is optimal, or if not, determine
on which side of ' the minimum lies.

4. Define f(z) = g(x) = h(x). For feasible z, f(z) <0

5. For an infeasible ', f(2') > 0 and g(z') > h(2')

sg > Sh; al feasible x are smaller than x’, so
xX* < X', if x* exists

Figure 2: sy(z") > Sp(z')

2.3 sy(a), Sy(z'), sn(z') and Si(z')
Let s4(2') and Sy(z') denote the min and max edge from g(z')
sg(z") = min{a; 1 i € I, a;2" + b; = g(2")}
Sy(z") =maz{a; i € I, a;2" + b; = g(2)}
Also let sp(2') and Sp(z') denote the min and max edge from A(z')
sp(z') = min{a; : i € I, a;2" + b; = h(z')}

Sn(z") = maz{a; : i € I, a;2" + b; = h(z')}

2.4 Finding the optimal solution x*

By comparing the values of s4(z'), Sy(z'), sp(2z') and Sh(2'), one can figure
out where zx could possibly exist in relation to z'.

1. If sy(z') > Sp('), then x* lies to the left of 2’ (Figure 2)
2. If Sy(z') > sp(a'), then x* lies to the right of 2’ (Figure 3)

3. If sg(2") — Sp(z’) <0< S,(2") — sp(2'), then x* is infeasible (Figure 4)

Sg < sh; all feasible x arelarger than X', so
x* >, if x* exists

Figure 3: Sy(2') > sp(z')

A
i Sg
s ‘\://
: sh
sh v

X
sg — Sh <=0 <= Sg - sh; NO feasible x

Figure 4: s,(z') — Sp(z') <0 < Sy(z') — sp(2")

f(x') <=0and g(x’) <= h(x’)
g(x') <h(x"); x* <x’

Figure 5: xx < z'

f(x") <=0and g(x’) <= h(x’)
g(x') <h(x'); x* >x’

Figure 6: xx > z'

f(x") <=0and g(x’) <= h(x’)
sg<=0<=8g; x* =X’

Figure 7: xx = 1’

f(x") <=0and g(x') = h(x")
xX* <x

Figure 8: xx < z'

f(x') <=0and g(x’) = h(x’)
x* >x

Figure 9: zx > '

For ' to be in a feasible region, the following has to be true:
f(2') < 0 and g(z") < h(z')

Once a feasible region has been found, then you can know that x* exists.
If g(z') < h(z'), then there are 3 possible cases for where x* is:

1. zx < 2’ (Figure 5)
2. x> ' (Figure 6)
3. zx =1’ (Figure 7)
And if g(x’) = h(x’) then

f(x') <=0and g(x’) = h(x")
x* =x' (casel)

Figure 10: zx = '

f(x') <=0and g(x’) = h(x")
x* =x' (case2)

Figure 11: zx = 1’

1. zx < 2’ (Figure 8)
2. zx >z’ (Figure 9)
3. zx =z’ (Figure 10) or (Figure 11)
We can conclude the following theorem from the above cases:
Theorem 2.1 Ifx' in [a, b] then O(n) suffices to decide all of the following
1. if the problem 1is infeasible
ifox = 1o

if xx in [a, 2'] if there exists xx

e

if xx in [z, 0] if there erists zx

2.5 Algorithm

Arrange the elements of I; (I; is handled likewise) in disjoint pairs. One of
the following cases will hold:

1. If a; = a; in pair (i, j), drop the redundant line. In other works, if the
slopes of the two lines are the same, drop the one with the smaller y
intercept from I; (or the larger from I5)

2. Compute z;; = b;—b;/a; —a;, the intersecting point of the 2 lines where
a; > a;
(a) If z% € [a,z;;] and i, j in I1, line j is redundant

)
(b) If zx € [x;;,b] and i, j in I1, line i is redundant
(c) If xx € [a, ;5] and i, j in 12, line i is redundant
)

(d) If z* € [z;;,b] and i, j in 12, line j is redundant

The notation may be a little confusing here, remember that a and b are
the minimum and maximum feasible values of z’, whereas «a; is the slope of
the 7th line and b; is the y-intercept of the ith line.

Next find the mediam value z,, of z;; and choose the appropriate interval
la, T,,] or [Z,,,b] containing z*. The correct interval contains at most half of

xi;. For each of the remaining z;;’s not thrown out, check the contraints as
discussed above.

Since the algorithm removes 1/4 of the constraints each time, it runs in
T(n)=cn+T(3n/4) = O(n)

10

