
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Spring 2005 1991 Scribe: Gabor M. Czako, 1990 Scribe: Sesh Venugopal, 2004 Scrib

Higher Dimensional Convex Hull Algorithms

1 Convex hulls

1.0.1 Definitions

The following definitions will be used throughout. Define

• Sd: A d-Simplex
The simplest convex polytope in R

d. A d-simplex is always the convex
hull of some d + 1 affinely independent points. For example, a line
segment is a 1− simplex i.e., the smallest convex subspace which con-
tains two points. A triangle is a 2 − simplex and a tetrahedron is a
3 − simplex.

• P: A Simplicial Polytope.
A polytope where each facet is a d − 1 simplex. By our assumption, a
convex hull in 3-D has triangular facets and in 4-D, a convex hull has
tetrahedral facets.

• P: number of facets of Pi

• F : a facet of P

• R: a ridge of F

• G: a face of P

• fj(Pi): The number of j-faces of P . Note that fj(Sd) = C(d+1
j+1).

1.0.2 An Upper Bound on Time Complexity: Cyclic Polytope

Consider the curve Md in R
d defined as x(t) = (t1, t2, ..., td), t ∈ R. Let H be

the hyperplane defined as a0 + a1x1 + a2x2 + ... + adxd = 0. The intersection
of Md and H is the set of points that satisfy a0 + a1t + a2t

2 + ...adt
d = 0.

This polynomial has at most d real roots and therefore d real solutions. → H
intersects Md in at most d points. This brings us to the following definition:
A convex polytope in R

d is a cyclic polytope if it is the convex hull of a

1

set of at least d + 1 points on Md.

Note the following related theorem:
A cyclic polytope has C(n

k) (k − 1) faces for 0 ≤ k ≤ d
2
.

For a cyclic polytope, every d points creates a dimension d − 1 face.
Therefore, in d dimensions, given n points, there are at most C(n

d) facets.
Or, for dimension d,

Theorem 1.1 fj−1 = C(n
j), j ≤ d

2

From this, we conclude that a convex polytope of dimension d can
have at most O(n� d

2
�) facets. Therefore, the lower bound for finding

the convex hull of a set of points in dimension d is Ω(n� d
2
�) (note that for

d = 2, d = 3, Ω(n log n) is a stronger lower bound, not based on the size of
the output).

We also get the following lemma:

Lemma 1.2 Let Pi be a convex polytope with n vertices in R
d and let p be a

vertex of P . The number of faces of P which contains p in their boundary
plus the number of incidences among them is in O(n� d−1

2
�).

An intuitive explanation is that there is a hyperplane which separates p
from P . This hyperplane cuts P in a (d − 1)-dimensional polytope with at
most n − 1 vertices where each face has p in its boundary.

2

1.1 The beneath-beyond algorithm

Figure 1: The beneath-beyond method. Illustration of the non-pyramidal
update of the tetrahedron ABCD with point P being the latest addition to
the convex hull.

This algorithm incrementally builds up the convex hull, keeping track of
current convex hull Pi using an incidence graph. Assume that every time a
point is chosen to be added to the current convex hull, it is not in the same
affine space as any of the facets of the current convex hull (see figure 2b).
For instance, if the current convex hull is a tetrahedron, a new point to be
added will not be coplanar with any of the faces of the tetrahedron.

Figure 2: a) Pyramidal update b) Simplifying assumption that new point is
not in the affine space of any of the facets of the current convex hull.

3

Figure 3: Non-pyramidal update: Consider in R
3, if pi were a light shining

on the current convex hull. All the facets that the light hits (white) will have
to be removed. Facets bordering these facets (gray facets) will induce new
facets.

1.1.1 Algorithm

Given a set S of n points in R
d,

1. Presort the points along one direction, say x1. Let S = {p0, p1, . . . , pn−1},
be the input points after sorting. Process the points in increasing x1

order.

2. Take the first d points, which define a facet, as the initial hull.

3. Let pi be the point to be added to the hull at the ith stage. Let Pi

= conv(p0, p1, . . . , pi−1) be the convex hull polytope built so far. The
two kinds of hull updates are pyramidal and non-pyramidal.

(a) A pyramidal update (see figure 2a) is done when pi �∈ aff(p0, p1, . . . , pi−1)
– when pi is not on the hyperplane defined by the current hull.
A pyramidal update consists in adding a new node representing
pi to the incidence graph and connecting this node to all existing
hull vertices by new edges .

(b) A non-pyramidal update (see Figure 3) is done when the above
condition is not met, i.e., pi is in the affine subspace define by the
current convex hull. In this case, faces that are visible from pi are
removed and new facets are created. Faces are each assigned a

4

color based on their position relative to pi. A facet F of Pi−1 is
colored black or white depending on whether F is seen by pi. A
facet F is

• White iff the hyperplane containing F separates pi and Pi−1

.
• Black otherwise

A lower dimensional face G is colored either white, black, or gray,
depending on the colors of the faces of which it is a subface. A
face G is

• White if it is a subface of only white faces
• Black if it is a subface of only black faces
• Gray otherwise

White faces are visible from pi. Black faces are not visible from pi.
Gray faces are the borders between visible and non-visible faces.
The updated hull is obtained as follows. If a face G (includes
facets and lower dimensional faces) is colored

i. Black → G remains in the convex hull
ii. Gray → G remains in the convex hull and G induces a new

face G′ with pi. G′ = CH(G
⋃

pi).
iii. White → G is deleted

Figure 4:

5

1.1.2 Algorithm Analysis

Define

• P i: number of faces of Pi

• Ii: number of faces created in updating Pi−1 to include pi (note that
since each gray face induces a new face, this is also the number of gray
faces).

• Di: number of faces that get deleted (note that this is also the number
of white faces).

If we use a hyperplane H to cut the point pi off from the rest of the
polytope we can use 1.1 to find an upper bound on the number of new faces
– the upper bound on the number of d − 2 faces
fd−2(Pi) = O(i�

d−1
2

�) (see Lemma 1.2).

• Pyramidal Update Time Complexity Analysis
Realize that the time complexity for a pyramidal update is linear in
the number of faces. Therefore, the time complexity is O(Ii).

• Non-pyramidal Update Time Complexity Analysis
To compute time complexity of a non-pyramidal update, consider the
two following facts

1. One of the facets containing pi−1 must be white.

2. White facets form a connected set in the graph in which a facet
is represented by a node and a ridge is represented by an edge

Therefore, we can compute the time complexity of the algorithm as

1. O(i�(d−1)/2�): Identify one white facet by considering facets con-
taining pi−1 (note the set of facets incident upon pi has dimension
d − 1).

2. O(Di + Ii): Determine the remaining white facets using DFS
through the incidence graph.

3. O(Di + Ii): Determine all the white and gray faces using DFS.

4. O(Di): Delete all white faces.

5. O(Ii): Make new faces from gray faces.

6

The total amount of work done during non-pyramidal updates is
∑

i<n O(Di+
Ii). Since only faces which have already been inserted can be deleted we know
that

∑
i<n O(Di + Ii) ≤

∑
i<n O(Ii). So we can bound the time spent if we

can bound the total number of faces inserted.
How can we bound Ii? Note that Pi contains at most i vertices, since

only i points have been processed. Imagine taking a hyperplane and using it
to cut pi off from the rest of the polytope. The remaining polytope would be
a d− 1 dimensional polytope, which can have at most O(i�(d−1)/2�) faces (see
Lemma 1.2). Thus the time complexity of the incremental algorithm is:

∑
i<n

O(Di + Ii) ≤
∑
i<n

O(Ii) ≤
∑
i<n

O(i�(d−1)/2�) = O(n�(d+1)/2�)

The presorting step takes time O(n log n), so the overall time complexity
is O(n log n + n�(d+1)/2�). This is the optimal worst case complexity for even
d.

7

1.2 The Gift-Wrapping method

Figure 5: Gift-wrapping. Point D is interior to the tetrahedron formed by
points A, B, C, and P , and is therefore not on the convex hull. We start
with the triangle ABC and gift-wrap around the edge BC. The point P and
facet BCP is added to the hull. Next, we gift-warp around edge AC and
add facet ACP to the hull.

This algorithm was proposed by Chand and Kapur in 1970 and is dis-
cussed in [1], pg. 125-130. A rough sketch in R

3 is presented here. Define

• T : a “pool” of candidate subfacets for gift-wrapping

The important rules which will be used are:

• Every ridge is contained in exactly two facets.

• Every edge joins exactly two points.

• Given a facet F and a ridge R, one can find the “other” facet F ′ that
contains R in O(n) time.

1.2.1 Algorithm

1. Find some facet F and call its ridges “open” ridges

2. Put open ridges in pool T
3. While T is not empty

8

Figure 6: Illustration of discovering facets using the Gift-Wrapping method.

• O(n): Giftwrap over R
Determine, among all pi ∈ S which are not vertices of F , the point
p′ such that all other points are on one side of the hyperplane
aff(R ∪ {p′}).

• O(c): Update pool of open ridges
Add edges of newly discovered face to T .

The gift-wrapping step is shown for a 3-D case in Figure 5.

1.2.2 Algorithm Analysis

Let Pbe the number of facets of the convex hull of the n input points. Then
the time taken by the algorithm is O(nP). Thus the time taken by this
algorithm is sensitive to the size of the output. However, also note that
we can discover the same facet multiple times since each facets has three
ridges. Note that Pcan be as large as n�d/2�, giving a worst-case complexity
of O(n�(d+2)/2�).

9

1.3 Seidel’s shelling algorithm

Figure 7: Shelling of a polytope. a) e1, e2, e3, e4, e5 is a shelling of the convex
polygon but e1, e2, e4, e5, e3 is not. b) ABC, ABD, BDP, BPC, APC, APD
is a shelling, while ABC, PBC, ADP, DBP, APC, ABD is not, since,
for instance, the intersection of facet ADP with the union of
facets ABC and PBC does not have any edge in it. c)
ABCD, ABEF, CDGH, EFGH, BCGF, AEHD is not a shelling because
the intersection of EFGH with the union of facets ABCD, ABEF , and
CDGH consists of the set of edges EF, GH which does not constitute a
legal sub-shelling of the facet EFGH .

The two previous algorithms for the higher dimensional convex hull prob-
lem, the Beneath-Beyond method and the Gift-Wrapping algorithm have
complexities of O(n�(d+1)/2�) and O(nP) respectively. Depending on output
size, gift-wrapping can be as bad as O(n�(d+2)/2�). Seidel’s shelling algorithm

[4] has a complexity of O(n2+ Plog n). In the worst case P= n� d
2
�, so the

time complexity is O(n2 +n� d
2
� log n), which is the best bound known for odd

d > 3.

1.3.1 The shelling of a polytope

The shelling method works by traveling along a line and determining the
facets of the convex hull as they become visible.

Consider a d-polytope P with n faces F1, F2, ...Fn. Imagine traveling
along a directed straight line L that intersects the interior of P . Begin at
a point on L that is in the interior of P . Continue until you pass through

10

Figure 8: The shell is incrementally created so that it is fully connected. a)
The horizon of the shell. b) The next facet to be discovered can intersect
the horizon in one of two ways – at multiple ridges (left) or at a single ridge
(right).

some facet F . This facet F is the first in the shelling order. Continue moving
away from P along L and more facets will become visible. The order in which
these facets appear is the shelling order. When no more facets are visible,
jump back (or “move through infinity”) to the “beginning” of L. All the
facets of P that were not visible before are now visible. Still moving along
L, but now towards P , facets will become invisible. The order in which they
disappear constitutes the second part of the shelling order.

A shelling of a d-polytope P is an ordering of the facets of P , say
F1, F2, . . . , Fm (m = fd−1(P), the number of d − 1 faces or facets of P), so
that for each i, 1 ≤ i ≤ n,

Fi ∩
(⋃

j<i

Fj

)

yields the non-empty initial portions of some shelling of Pi .

1.3.2 Linear Programming for Shelling

The shelling line L is parameterized by x(t) = −a/t, −∞ < t < +∞. The
vector ais the direction of L.
We can use linear programming to determine for every p ∈S whether p is a
vertex of P and, if it is, the first facet in the shelling that contains p. Let
Hp be the hyperplane that contains that facet. All such Hp’s are included in

11

Hi. Hp is such that ∀q ∈S, q ∈ H+
p and Hp intersects L “first.” We need to

find n = (n1, n2, . . . , nd) such that:

• 〈q − p,n〉 ≥ 0
The hyperplane through p keeps all q ∈S to one side. Recall that
〈a, b〉 = |a||b|cos(θ). Therefore, 〈a, b〉 ≥ 0 if −π

2
≤ θ ≤ −π

2
. We can

insist that 〈p,n〉 = 1.

• 〈−a
t
− p,n〉 = 0. Remember that x(t) = −a

t
.

• Combining the above items:
〈−a

t
− p,n〉 = 0

〈−a
t

,n〉 + 〈−p,n〉 = 0
〈−a

t
,n〉 = 〈p,n〉

〈−a
t

,n〉 = 1
−1
t
〈a,n〉 = 1

t = −〈a,n〉
That is, x(t) is on the same hyperplane as p.

So the linear program is: t = −〈a,n〉, 〈p − q,n〉 ≥ 0, 〈p,n〉 = 1 If for some
p, the LP is infeasible, then p is interior to CH(S). Otherwise, we can discover
the first facet in the shelling order containing p.

1.3.3 A straight line shelling

Define

• L: A shelling line

• T : A set of horizon peaks

• Hi: A set of hyperplanes

• H : A single hyperplane

• Horizon face: A face G of fch a horizon face at (time) t iff G is con-
tained in two facets Fi and Fj of fch with ti < t and tj ≥ t. Thus a
horizon face is part of one face already seen along the shelling line and
one face not yet seen.

• G: Horizon ridge: A (d − 2)-face

• g: Horizon peak: A (d − 3)-face

• Horizon (at time t): The set of all horizon faces at time t.

12

Figure 9: Shelling of a polytope. a) Shelling line. b) Determination of next
facet in shelling order. Assume that the shelling order is (ABC, ACD, BCE,
CDE, ABD, BDE). Then, after ABC has been discovered, the next facet
ACD has only one ridge (AC) intersecting with ABC. The next facet BCE
has also just one ridge (BC) intersecting with the union of the first two
facets. The fourth facet CDE has two ridges, CD and CE intersecting with
the union of the first three facets and these ridges along with the vertex C
uniquely determine the facet CDE.

1.3.4 Using shelling to construct facets of the convex hull

Assumptions: No d+1 points lie in a common hyperplane. This assumption
implies that P , the convex hull, is a simplicial d-polytope, i.e., all facets of
P are (d − 1)-simplices.

1.3.5 Algorithm

1. For each point p ∈S solve a linear program with n − 1 constraints and
d − 1 variables.

(a) If the program is infeasible then eliminate p from S. It cannot be
a vertex of CH(S).

(b) If it is feasible then enter in the priority queue the time tp and
the set of points Qp that when unioned with p that formed the
hyperplane.

2. Let t be the minimum value in the priority queue. Report the facet
corresponding to t as the first facet. Delete the tp values from the
priority queue.

13

Figure 10: a) Given a point p, the linear program finds the point q5 whose
facet with p interesects the shelling line “first” and keeps all other points to
one side (〈q4 − p,n〉 > 0 ↔ cos(θ) > 0). b) Illustration of discovering facets
in the shelling order.

3. Process each time in the priority queue. For each time t, there is an
associated facet F to find. This facet can join the existing horizon in
one of two ways: For each t in the priority queue, the still unknown
facet will have order.

(a) F intersects the horizon in more than 1 ridge. Therefore, F con-
tains some horizon peak G and its two horizon ridges R1, R2. But,
dim(R1 ∪ R2) = dim(R1) + dim(R2) − dim(R1 ∩ R2)
(note R1 ∩ R2 = G = (d − 2) + (d − 2) − (d − 3) = d − 1 (a
hyperplane)

(b) The intersection consists of exactly one horizon ridge G. In this
case we cannot deduce Fi from the structure of the horizon. How-
ever, Fi must contain a vertex p ∈S that is not contained in G.
Also, p is not contained in any Fj with j < i. In other words, Fi

is the first facet in the shelling that contains p.

For the algorithm, We proceed as follows. Find the minimum time t
and its associated data. If

(a) There is a single point p with the minimum time. This corresponds
the Fi intersecting the horizon along a single ridge. Report Qp ∪p
as the next facet.

14

In this case, the horizon changes by adding a new peak. We
therefore have to compute the hyperplanes generated by this peak
and its neighbor peaks and add these new hyperplanes (ie their
times t to the priority queue.

(b) There are multiple points with the minimum time. This corre-
sponds to Fi intersecting the horizon along multiple ridges and
the multiple points are the horizon peaks. The union of the hori-
zon peaks is the next facet.
The horizon has been updated by adding a new ridge. We use
linear programming to find the point p that with that ridge will
create facet of P . We add this hyperplane to the priority queue.

1.3.6 Algorithm Analysis

If the dimension d is fixed, each of the n linear programs can be solved in O(n)
time using Meggido’s algorithm [5]. Thus the first step can be performed in
O(n2) time. Each time a facet is reported the priority queue (of size at most
n�d/2�) is updated. For fixed d, this takes time O(F log n) where Pis the
number of facets reported. Thus the overall complexity is O(n2+ Plog n).
If Pis superlinear, this beats gift-wrapping. In the worst case, it is the best
algorithm for odd d but is not provably optimal.

References

[1] F.P. Preparata, M.I. Shamos. Computational Geometry . Springer-
Verlag, 1985.

[2] H. Edelsbrunner. Algorithms in Combinatorial Geometry . Springer-
Verlag, 1987.

[3] CS672 class notes, lecture 9. March, 1989.

[4] R. Seidel. Constructing Higher-Dimensional Convex Hulls at Logarith-
mic Cost per Face. STOC 86, 404-413.

[5] N. Meggido. Linear Programming in Linear Time when the Dimension
is Fixed . JACM 31 (1984), 114-127.

15

