
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Spring 2005 Scribe: Katelyn Mann

Dynamic Convex Hull and Order Decomposable
Problems

1 Divide and Conquer Approach

In order to find the convex hull using a divide-and-conquer approach, follow
these steps:

• sort points (p1, p2, . . . , pn) by their x-coordinate

• recursively find the convex hull of p1 through pn
2

• recursively find the convex hull of pn
2
+1 through pn

• merge the two convex hulls

The merge procedure requires finding a bridge between two given hulls
which sit side by side. One way to do this is to find the bridge for the upper
hull and the lower hull separately. This procedure takes advantage of the
fact that the points are presorted by x-coordinate. Because of this ordering,
it is easy to divide a group of points in half. See figure 1 for a view of how
the merge procedure builds the bottom half of the convex hull. The top hull
can be built similarly. The three main phases of the procdedure are:

• look for bridge points between the hulls using a varient of binary search

• split the hulls at the identified bridge points

• concatenate left part of left hull and right part of right hull

When searching for a bridge, any vertex could be the bridge point. When
two vertices, a and b of hulls A and B, are being considered there are a num-
ber of different cases to look at to decide whether or not the ab is the correct
bridge. The cases come from looking at the angles: ∠(ab, �al), ∠(ab, �ar), ∠(�bl, ba), ∠(�br, ba).
These are the cases:

1



Figure 1: The merge procedure

2



1. If all of the four angles are ≤180 degrees, then ab is the bridge so we
are done.

2. If ∠(ab, �al) ≥ 180 degrees, then neither a nor any vertex to the right of a
can be the bridge point. The bridge of A and B is the bridge between
B and the left sub-chain of A. So, we delete the right portion of A
including a and continue to find the bridge of B and the left portion of
A.

3. If ∠(�br, ba) ≥ 180 degrees, then neither b nor any vertex to the left of
b can be the bridge point. Delete the left portion of B including b and
continue to find the bridge between the A and the right portion of B.

4. If both ∠(ab, �ar) and ∠(�bl, ba) ≥ 180 degrees, consider the intersection

point, v = (x, y), of �ar and �bl. Let MA be the maximum x-coordinate
of A and mB be the minimum x-coordinate of B.

(a) If x < mb, then no vertex of B could lie below �ar and therefore,
the left part of A, including a can be removed.

(b) If x > MA, then no vertex of A could lie below �bl and therefore,
the right part of B including b can be removed.

(c) If MA < x < mB, then both of the above two conditions hold.
Therefore, we can delete both the left part of A including a, and
the right part of B, including b.

5. If only ∠(�bl, ba) < 180 degrees, all other angles are non-reflex, so neither
b nor any point right of b can lie on the bridg, since ba lies within
∠(�br, �bl).

6. If only ∠(ab, �ar) >180 degrees, all other angles are non-reflex, so ab lies
within ∠(�al, �ar), so neither a nor any point to the left of a can lie on
the bridge.

See figure 2 for a look at all of the cases.

Analysis While trying to find the bridge, at least half of the vertices
of one of the hulls is being thrown out during each step. So at least 1

4
of

the vertices get thrown out each time. Therefore, the process takes O(logn)
time. Using a concatenable queue, also called a Q-structure, contatenating
the left portion of the left hull and the right portion of the right hull can be

3



Figure 2: Cases for finding a bridge

4



Figure 3: Divide-and-conquer tree

done efficiently. A concatenable queue is a form of a binary search tree that
allows efficient searching, splitting and concatenating. Every internal node
contains a pointer to the point with largest x-coordinate in its left subtree.
The tree built for the previous example is shown in figure 3. So the merge
procedure can be done in O(log n) using a concatenable queue and O(n)
otherwise. Since there are n vertices and log n levels in the tree the space
complexity is O(n logn).

The first step of the convex hull algorithm was to sort all points by x-
coordinate. That step takes O(n log n). Using what we know about the
merge procedure, the recurrence is given by

T (n) = 2T (
n

2
) + O(logn)

which is O(n). Therefore, sorting the points dominates and the time com-
plexity of the entire algorithm is O(n logn).

1.1 Review of Binary Trees

There are two models of binary trees. One in which the data sits in the leaf
nodes and the other where the data sits in the internal nodes. See figure 4
for a look at the two different types. In the model containing data in the
leaf nodes there can be pointers to the largest item in the left subtree as

5



shown in figure 4. As mentioned above this pointer allows for more efficient
performance of the concatenate, split, and search.

1.2 Supporting Lines

A supporting line is an extended line segment of a convex polygon that divides
the plane such that the entire polygon lies to the same side of the line. The
supporting line creates a closed halfplane on the side of the plane containing
the polygon. See figure r̃effig:sline.

2 Dynamic Convex Hull

The previous discussion of a divide-and-conquer approach to finding the con-
vex hull assumed that all points were known ahead of time. In order to add or
a remove a point from the set, the entire process would need to be repeated,
taking O(n logn) time. The algorithm remains the same as before:

1. Sort the points by their x-coordinates. Let v1, v2, . . . , vn denote the
sorted list.

2. Form lower hull A of v1, v2, . . . , vn
2

3. Form lower hull A of vn
2
+1, . . . , vn

4. Merge A and B to form the lower hull of C

Almost the same merge procedure that was described in the previous
section can be used here. The complexity for the initial build of the convex
hull remains O(n log n). Since we are considering the hull to be dynamic,
there needs to be an efficient way to insert and/or delete points. The tree
used in the previous section holds information necessary to recover hulls
before they were merged.

In the approach mentioned before the space complexity was O(n logn).
Here a few changes can be made to achieve O(n) space complexity. A vertex,
v, could be a part of the convex hull at each level of the tree. Instead of
wasting space and keeping track of that vertex at each level, it is only stored
at the highest level that it reaches. So, at each node there is Q∗, B, and V .
V remains the same as in the previous example - it is a pointer to the largest
node in its left subtree. Q∗ replaces Q at every level except for the top. Q∗ is

6



Figure 4: 2 models of binary trees

7



Figure 5: A supporting line

a pointer to a tree containing all points that are not part of the convex hull
at the current level but were part of the hull in the previous level. B is the
position of the bridge between the left convex hull and the right convex hull.
See figure 6 for the dyamic version of the divide-and-conquer tree using the
same example again. Note that in this small example, Q∗ is not tree. In a
more complex example, using more points, Q∗ would take on a tree structure.

Given the tree structure, inserting a point into the set is the same as
inserting a point as a leaf node of the tree then making the appropriate
adjustments to the tree structure. In order to fix the tree, all convex hulls
along the path from the inserted node to the root must be reconstructed.
Starting at the top and using information in the tree to split along the path,
the hulls are recovered. The process of inserting takes O(log2 n). Splitting
the tree takes O(log n) and the length of the path is O(log n) so the total
time complexity of insertion is O(log2 n).

3 Order Decomposable Problems

A problem is M(n)-Order Decomposable if it can be solved by the following
steps:

• the set can be ordered by some scheme ORD

8



Figure 6: Dynamic Tree

• form a solution over the first i and last n− i elements for all 1 < i < n

• merge in time M(n)

A static divide-and-conquer algorithm takes time O(ORD(n) + T (n))
where T (n) = 2T (n

2
) + M(n). For example, the convex hull algorithm is

O(log n)-Decomposable and T (n) = 2T (n
2
) + O(logn).

A dynamic operation that works on a balanced tree corresponds to the
computation tree. The leaves correspond to the base case of the recursion
and store the ordered elements of the set. Each nonleaf node α contains
a pointer to the largest element in its left subtree, and stores the result of
merging the results Qβ and Qγ of its two children β and γ. As we merge
Qβ and Qγ, we also store the information for the merging in α. The unused
pieces Q∗

β of Qβ and Q∗
γ and Qγ are stored in β and γ.

To insert or delete an object, we locate the appropriate leaf using bi-
nary search. At each node α on the path from the root to the leaf, we
use the merging information stored at α to split Qα and use them together
with Q∗

β and Q∗
γ to recover Qβ and Qγ . The process of descending the tree

takes Down(n) = O(M(n)) if M(n) = Ω(nε) for ε > 0, else Down(n) =
O(M(n) log n).

After updating the leaf of the tree, we ascend the tree to reform the result
along the path from the leaf to the root. Since the number of merging and
splitting is the same, Up(n) = Down(n).

9



From the above analysis, we conclude that the dynamic maintenace of
the set can be performed in O(M(n)) if M(n) = Ω(nε) for ε > 0, otherwise
it takes O(M(n log n).

3.1 Maximal Problem

Another example of an M(n)-Order Decomposable problem is the maximal
problem.

Finding the maximal elements Max of a set of points in R2 where elements
in Max are sorted by the y-coordinate.

A point p is maximal in a sset of points, S if and only if either xp > xq

or yp > yq for all q ∈ S. The problem can be solved by

• Sort S by x-coordinate. Let p1, p2, . . . , pn donote a sorted list

• Find the maximal elements Maxl for p1, p2, . . . , pn
2

• Find the maximal elements Maxr for pn
2
+1, . . . , pn

• Merge Maxl and Maxr to form Max

The merge can be done in the following way: Let p1 and pr be the highest
points of Maxl and Maxr respectively. if pl > pr, binary search for pr in
Maxl by the y-coordinate and split Maxl. Max is the higher portion of Maxl

merged with Maxr Otherwise (pr ≥ pl), Max = Maxr. The merge process
can be done in O(n logn) by splitting and concatenation. So, this problem is
O(log n)-decomposable, and the dynamic maintenance of maximal elements
of a set S could be done in O(log2 n) time.

3.2 Finding the Lower Envelope

Find the intersection of n lower halfplanes (also called the lower envelope).
Let the set of lower halfplanes be Hi = {(x, y)|y < aix + bi}. The problem
can be solved by the following steps:

1. Sort Hi by the slope of the boundary lines. Let l1, l2, . . . , ln denote the
sorted list.

2. Find the intersection of the lower halfplanes whose boundary lines are
l1, l2, . . . , li.

10



3. Find the intersection of the lower halfplanes whose boundary lines are
li+1, . . . , ln.

4. Merge the results of the above.

The merge can be done in the following manner: Find the intersection of
the two contours in time O(log n), split them there and concatenate the front
piece of the first with the tail piece of the second, also using O(log n) time.
Consequently, the lower halfplane problem is also O(log n)-decomposable.

11


