
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Spring 2004

Convex Hulls Algorithms - part II

1 Incremental Approach

Assume that the given points are in general position, i.e. no three are
collinear and no four are cocircular. This approach works as follows:

1. Sort all points on the x-coordinate.

2. Let the first three points define a triangle which is in fact their convex
hull. Call it C3.

3. for i = 4 to n
find the pair of bridges from pi to the convex hull Ci−1.
form Ci.

In the above algorithm, a bridge is an edge from the current point under
consideration to the previously formed hull. Since the current point has the
maximum x-coordinate (so far), it has to be on the hull, so two new edges
have to be introduced and some of the edges previously on the hull would
have to be removed. During the course of the algorithm, each point pi is
the rightmost endpoint of at most two edges. Hence the total number of
edges created is ≤ 2n. So steps 2 and 3 above take O(n) time overall. Step 1
requires n log n, time and hence the algorithm runs in n log n. This algorithm
also extends to higher dimensions because the same technique of sorting along
one coordinate can be used there. We discuss the higher dimension algorithm
later in the course.

Note that in this problem, if the input points all had integer coordinates,
then step 1 could be accomplished in O(N log N

log log N
) using the Fredman-Willard

result if bitwise Boolean calculations are allowed. Thus the entire algorithm
would have the same complexity.

1



2 A divide and conquer approach

Some of the above methods are optimal but they do not really give us more
information than the convex hull. They are better for static cases when
the set of points is known in advance and the only objective is to find the
convex hull of that set. In dynamic cases, it may be necessary to add/delete
points over time in which case we hope to modify the hull quickly rather than
start from scratch everytime. A divide and conquer approach which helps to
retrieve information quickly works as follows:

1. Sort points on x-coordinate. Let them be v1, . . . , vn.

2. form convexhull(1,n
2
,A).

3. form convexhull(n
2

+ 1,n,B).

4. merge(A,B,C).

The merge process is carried out by finding the bridges for the upper
convex hulls as well as the bottom convex hulls of both halves. Given bottom
convex hulls of both sides, the bottom bridge can be found in O(n), or even
O(log n), time (done by looking at the kind of angles formed by the current
bridge under consideration and the edges on the given bottom convex hulls;
8 different cases are possible for each prospective bridge). So the recurrence
in this case is either

T (n) = 2T (n
2
) + O(n),

or
T (n) = 2T (n

2
) + O(log n).

The solution to both of the above recurrences is T (n) = n log n, but the
second method is better in case of dynamic updates. To facilitate dynamic
updates, the hulls at each stage are maintained at all times. The partial
hulls have pointers to them. All the hulls are maintained as concatenable
queues so as to be able to perform splits and joins in log n, time. When the
convex hull of the points is being constructed, the divide and conquer tree
is formed and each node in the tree corresponds to a partial hull at some
step during the recursive construction. Rather than store the complete hull
at each stage, part of the hull which is removed from the hull during a merge
step is stored and pointers are maintained to the position where the hull was

2



.
.

.
.

.

1. push up, find pi

2. p
ush

 up, fi
nd p j

3.
 p

us
h 

up
, f

in
d 

p k

pm

pM

pi

pj

pk

Figure 1: Quickhull

split. To insert or delete a new point, begin at the root, split the current bc-
hull and form hulls of the two children and see which of them would contain
the inserted/deleted point and move down the tree accordingly. Do the same
at the interior nodes as well. This descent requires O(log2(n)), time. While
going back up, which is the real updation process, only a constant number of
merges are performed at each node (each merge is only log n), so the entire
ascent requires O(log2 n) time. Consequently, the bc-hull of a set of n points
can be maintained at a cost of O(log2(n)), per insertion/deletion.

3 Quickhull

1

The QuickHull algorithm tries to discard as many points as possible which
are definitely interior to the hull, and then tries to concentrate on the ones
that are closer to the hull boundary.

1. Find the point pm with the smallest x-coordinate (in case of a tie,
choose one with largest y-coordinate)

2. Find the point pM with the largest x-coordinate (in case of a tie, choose
one with largest y-coordinate)

1Scribe: Marko Bukovac, Spring 03

3



As shown above, we find two extreme points pm and pM in the set. We
then need to find the third extreme point pi, which is the point which is
furthest away from the line pmpM - it is extreme in the direction orthogonal
to line pmpM and as such lies on the hull boundary. At this point we can
discard all the points in the triangle �pmpipM . We can then repeat the
procedure for all the points right of pmpi and points right of pipM .

QUICKHULL(pm, pM , S)

1. if S = ∅ return ()

2. else

pi ← index of point with max distance from pmpM

A ← points strictly right of pmpi

B ← points strictly right of pipM

return QUICKHULL(pm, pi, A) + (pi)+ QUICKHULL(pi, pM , B)

The analysis of Quickhull is similar to the analysis of Quicksort. In the
best case, if we always have a balanced partition, we get that T (n) = 2T (n

2
)+

O(n), whose solution is T (n) = O(n logn). However, in the worst case, the
partitioning may not be balanced and we can get a lopsided tree. In this
case, just like Quicksort, the running time of the algorithm is T (n) = O(n2).

4


