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Point Inclusion and Processing Simple Polygons into
Monotone Regions

1 Point Inclusion in a Polygon

1

An example of a typical decision problem is the problem of determining
Inclusion in a polygon. One way is to draw a line from the given query point
and compute the intersections of that line with the polygon. Find the number
of intersection points on both sides of the query point. If the number is odd
on both sides, the point is in the polygon, else it is out. This can clearly be
done in O(n) time, where n is the number of vertices in the polygon.

The best algorithm we’ve discussed for point inclusion in a simple poly-
gon takes O(n) time. A short review of this algorithm follows (leaving out
degenerate cases).

1. Begin by drawing a line L through the point to be tested Fj.
(Any line passing through the point will do). Also, initialize
two counters Left and Right to zero.

2. Assuming you have the list of points of the simple polygon in
clockwise order, start at the beginning and walk through the
list of points, checking the following:

(a) Check intersection between the line formed by the current
point and the next point with the line L. If the lines
intersect, check to which side of F, the intersection occurs.
Increment the appropriate counter (Left or Right). This
can be done in constant time.

3. In the end, if both counters Left and Right are odd, the point
Fy is inside the polygon, otherwise it is outside the polygon.

IThis section adapted from lecture 1, Spring 1990



Since you execute a constant time step for each edge in the list, the
algorithm is clearly O(n). Also, the problem has an easy to state lower
bound of €2(n) since unless you have checked each point, you could be wrong
about whether or not the point was in the polygon.

A class of polygons which is easier to handle is the class of convex poly-
gons. As the name suggests, these polygons satisfy the property of convexity
namely, if x,y € P = Az + (1 — Ny € P for A € [0, 1].

Point inclusion in a convex polygon takes O(logn) time.

Given a convex polygon P, we can always find a line which leaves P on
one side. A line, which has the above property, and touches P is called a
supporting line for P. So, a supporting line intersects the boundary but not
the interior.

Convex polygons can be characterized by the following properties:

1. Two disjoint convex polygons can always be separated by a line sup-
porting one of them.

2. A convex polygon admits a supporting line at each vertex.

The point inclusion problem becomes rather easy when we are in the
realm of convex polygons. Let ¢ be the query point and P be the given
convex polygon, where the vertices are given in clockwise order around the
boundary. Let y(g) denote the y-coordinate of ¢g. The following steps are
required for point inclusion:

1. Determine the points of the maximum and minimum y-coordinate.

2. Using binary search, isolate the two edges intersected by the
line [, where [ is y = y(¢@).

3. See if ¢ lies between these two edges.

Using the naive approach, step 1 requires O(n) time, step 2 O(logn),
time and step 3 O(1) time. If step 1 could be performed in lesser time, the
overall complexity would be reduced. To reduce that complexity, we use the
following property exhibited by the y-coordinates of the points of a convex
polygon. If we draw a graph of the index of each point vs. its y-coordinate,
the resulting graph has at most one maxima and at most one minima. An
example of this is shown in figure 1. The following procedure locates the
vertex with the maximum y-coordinate:
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Figure 1: An example graph the y-coordinates of a convex hull

Let y(1),...,y(n) be the y-coordinates.

Compare y(1), y(%), y(%) and y(n) and select the largest.

If the largest is y(%) (resp. y(%)), then clearly the maximum
must lie somewhere in the first (resp. last) entries and vice
versa.

So we can rule out the last (resp. first)

If the largest is y(1) (resp. y(n)), then
in the first (resp. last) % entries, and thus
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This algorithm determines the maximum (minimum) entry in O(log% n)
time which is O(logn).

(Fine tuning this algorithm using Fibonnaci numbers improves the con-
stant, but not the asymptotic complexity).

1.1 Relation to Other Problems

The algorithm for point inclusion in convex polygons in O(logn) time can be
generalized to run on any monotone polygon with respect to one dimension.
A polygon is monotone in respect to the z-direction if it’s intersection with
any vertical line is () or a single connected component. See figure 2 for
an example of a monotone polygon and figure 3 for an example of a non-
monotone polygon.

Since point inclusion in monotone polygons is O(logn), if we could spend
time breaking a simple polygon into monotone polygons, we could do point



\ ///

/

Figure 2: A monotone polygon

Figure 3: An example of a polygon that is not monotone




inclusion in better than O(n) time, discounting the time spent preprocessing
(which we do only do once).

Many problems are easy not only for convex polygons but also for slightly
more general classes of polygons. Here are a few important definitions:

A polygonal chain is a sequence of vertices and edges joining adjacent
vertices.

A monotone chain is a polygonal chain for which there is a distinguished
line [ such that if its vertices are projected on [, then the order of the vertices
is preserved.

A monotone polygon is a polygon that can be split into two chains which
are monotone with respect to a selected direction.

A polygon P is said to be star shaped if there is a point ¢ in its interior
such that, for any point p € P, the line segment joining p and ¢ lies wholly
within P.

For a star shaped polygon P, the set of all points ¢ having the above
property (the set of points in the interior of P which can see all points of P)
is called the kernel of P. The kernel is always a convex polygon and has at
most n sides if P has n sides.

It is important to note that inclusion is just as easy in monotone polygons
as in convex polygons if you know the direction of monotonicity and the same
holds for star shaped polygons if you know a point in the kernel.

Another way to test for point inclusion in a simple polygon is to use
Decomposition. Given a simple polygon, by adding diagonals joining vertices
of the polygon which are interior to the polygon, it is possible to decompose
the polygon into convex pieces, monotone pieces, or even triangles. To test
for point inclusion, we could triangulate the polygon and then determine if
the query point lies in one of the triangles interior to the polygon. For a
simple polygon, a triangulation gives rise to O(n) triangles (Euler’s theorem
on planar graphs), and checking within a triangle takes only O(1) time (if
a,b,c are the vertices of a triangle in counterclockwise order, check whether
q lies to the left of each of a7), be and ca). So, if the triangulation is provided,
then inclusion testing can be done in O(n) time.

The problem of triangulating a simple polygon, however, is a classic Com-
putation Problem in computational geometry. The best known algorithm for
the triangulation of a simple polygon takes O(n) due to an algorithm by
Chazelle time and the lower bound is Q(n).




2 Processing Simple Polygons into Monotone
Regions

2.1 Approach

The approach is this problem is to use a sweep line across the polygon from
left to right and update a data structure corresponding to the current ver-
tical components seen as you sweep across. While doing this, divide the
simple polygon into monotone regions, putting them into a data structure
that allows each region to be analyzed for point inclusion in O(logn) time
and allows each region to know its neighbor regions as well.

The goal of the algorithm is to create a O(nlogn) time algorithm that
sweeps the polygon, and at the end have a data structure and algorithm that
allows point inclusion in the simple polygon to be decided in O(logn) time.

2.2 Data Structures
2.2.1 Stopping Points

To simulate a sweep line moving across the plane, a StoppingPoints data
structure is needed. This holds the points where STATUS needs updated.
It is keyed on lower z-coordinate (assume general position or break ties based
on lower y-coordinate). Each point in Stopping Points needs to have pointers
or references to the two edges it is connected to. This could be implemented
with pointers into a DLL (doubly-linked list) of vertices in clockwise (or
counterclockwise) order.

Some data structure to store the monotone polygons is needed. A doubly
connected edge list DCEL would work. A DCEL has the following properties:

1. Any vertex has access to one edge that it is on.
2. Any face has access to one edge that surrounds it.

3. Any edge has access to 2 vertices and the face to it’s right and the face
to it’s left.

2.2.2 STATUS

A second data structure, a Balanced Binary Search Tree, that represents the
current portion of the polygon the sweep line is currently crossing is needed



(the STATUS data structure) maintained using each intersecting the sweep
line in its current position.

STATUS is a BBST of edges, sorted based on relative y-position of edges.
For our purposes and examples, lower y-coordinate edges will be to the left
of edges with higher y-coordinates.

Edges can be stored as 4-tuples < X,nin, Ximaz, M, b > where the terms
are the z-coordinates of the endpoints, the slope of the line and the intercept
of the line.

Either you could store edges in the leaf nodes of the tree, and use the
internal nodes as decision nodes to reach the edge nodes, or you could leave
all the data in the internal nodes. It will also be useful to cyclically link our
edges (so that each edge knows the edges above and below it), so it is easier
to use the tree with data stored in leaf nodes, though you could also doubly
thread the other form of the tree.

Each edge which has the interior of the polygon directly above it needs
a pointer to its helper. This is defined as the point closest to the sweep line
between this interior edge and the edge to it’s right in STATUS. (This
is used later in the section on critical points). It should be noted that the
helper of an edge could point to its own vertex.

2.3 Algorithm Sketch

As points are processed (off the StoppingPoints heap), 3 kinds of updates
to STATUS are possible.

1. Put 2 new edges into STATUS. See figure 4.

2. Replace an edge within STATUS (adding old edge into DCEL). See
figure 5.

3. Remove 2 edges from STATUS (adding old edges into DCEL) Note:
these edges will be adjacent in STATUS. See figure 6.

We now need the concept of critical vertices. These are the vertices that
will have to be 'fixed” in order to break the polygon into monotone regions.
The first or the third kind of update to the BBST can be critical vertices.
When the sweep line passes through those points (or, they are popped off
the StoppingPoints heap), if these points are ’interior’ to the polygon, they
are critical points. Testing 'interior’ is simple, once the node in STATUS is
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Figure 4: Put 2 new edges in STATUS
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Figure 5: Replace an edge in STATUS

found where the edges will be added, count the number of data nodes to the
left and to the right of this node. If they are both odd, then the point is a
critical point, otherwise it is not a critical point. See figure 7 for examples
of critical points.

While updating the helper field of lines in ST ATUS where the immediate
region above them is interior to the polygon, you do two things to fix the
critical points, and break the polygon into monotone regions.

Call the critical point in figure 7 on the left a split and the one on the
right a merge. A merge is easier to handle, you simply connect it to the
helper of the line to the left in ST ATUS where the critical point is found.

The method for handling splits is harder, since you can’t see anything to
the right of the sweep line yet. But, if whenever replacing a helper pointer
that was not the endpoint of the line itself, you can connect the previous and
new values of helper, you will connect the critical points together.

Both of these connects are not simple procedures, since you have to con-
nect edges, split faces, etc. in the DCEL output.

Algorithm can be extended to simple polygon with holes by adding sup-
port for multiple linked lists of points representing boundaries of both the
polygon and the holes.

Figure 6: Remove 2 edges from STATUS



Figure 7: Examples of each kind of critical point

Since for each n points in StoppingPoints, STATUS may have to be
searched and updated, which takes O(logn) time, the algorithm takes a total
of O(nlogn) time. STATUS never has more than n edges in it, since there
are only n edges in the simple polygon, and StoppingPoints as well contains
only the original vertices of the polygon, so the space complexity is O(n).



